【題目】如圖1,的余切值為2,,點D是線段上的一動點(點D不與點A、B重合),以點D為頂點的正方形的另兩個頂點E、F都在射線上,且點F在點E的右側,聯(lián)結,并延長,交射線于點P.
(1)點D在運動時,下列的線段和角中,________是始終保持不變的量(填序號);
①;②;③;④;⑤;⑥;
(2)設正方形的邊長為x,線段的長為y,求y與x之間的函數(shù)關系式,并寫出定義域;
(3)如果與相似,但面積不相等,求此時正方形的邊長.
【答案】(1)④⑤;(2);(3)或.
【解析】
(1)作于M,交于N,如圖,利用三角函數(shù)的定義得到,設,則,利用勾股定理得,解得,即,,設正方形的邊長為x,則,,由于,則可判斷為定值;再利用得到,則可判斷為定值;在中,利用勾股定理和三角函數(shù)可判斷在變化,在變化,在變化;
(2)易得四邊形為矩形,則,證明,利用相似比可得到y與x的關系式;
(3)由于,與相似,且面積不相等,利用相似比得到,討論:當點P在點F點右側時,則,所以,當點P在點F點左側時,則,所以,然后分別解方程即可得到正方形的邊長.
(1)如圖,作于M,交于N,
在中,∵,
設,則,
∵,
∴,解得,
∴,,
設正方形的邊長為x,
在中,∵,
∴,
∴,
在中,,
∴為定值;
∵,
∴,
∴為定值;
在中,,
而在變化,
∴在變化,在變化,
∴在變化,
所以和是始終保持不變的量;
故答案為:④⑤
(2)∵MN⊥AP,DEFG是正方形,
∴四邊形為矩形,
∴,
∵,
∴,
∴,
即,
∴
(3)∵,與相似,且面積不相等,
∴,即,
∴,
當點P在點F點右側時,AP=AF+PF==,
∴,
解得,
當點P在點F點左側時,,
∴,
解得,
綜上所述,正方形的邊長為或.
科目:初中數(shù)學 來源: 題型:
【題目】對實數(shù)a,b,定義運算“*”為:a*b=
(1)求函數(shù)y=x*(2x﹣1)的解析式;
(2)若點A(x1,y1)、B(x2,y2)(x1<x2)在函數(shù)y=x*(2x﹣1)的圖象上,且A、B兩點關于坐標原點成中心對稱,求點A的坐標;
(3)關于x的方程x*(2x﹣1)=m恰有三個互不相等的實數(shù)根x1,x2,x3,且x1<x2<x3,設t=x1+2x2+x3+x1x2x3,則t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一棟居民樓AB的高為16米,遠處有一棟商務樓CD,小明在居民樓的樓底A處測得商務樓頂D處的仰角為,又在商務樓的樓頂D處測得居民樓的樓頂B處的俯角為.其中A、C兩點分別位于B、D兩點的正下方,且A、C兩點在同一水平線上,求商務樓CD的高度.
(參考數(shù)據(jù): , .結果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,線段,,,,點為射線上一點,平分交線段于點(不與端點,重合).
(1)當為銳角,且時,求四邊形的面積;
(2)當與相似時,求線段的長;
(3)設,,求關于的函數(shù)關系式,并寫出定義域.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明利用函數(shù)與不等式的關系,對形如 (為正整數(shù))的不等式的解法進行了探究.
(1)下面是小明的探究過程,請補充完整:
①對于不等式,觀察函數(shù)的圖象可以得到如下表格:
的范圍 | ||
的符號 |
由表格可知不等式的解集為.
②對于不等式,觀察函數(shù)的圖象可得到如下表格:
的范圍 | |||
的符號 |
由表格可知不等式的解集為 .
③對于不等式,請根據(jù)已描出的點畫出函數(shù)的圖象;
觀察函數(shù)的圖象,
補全下面的表格:
的范圍 | ||||
的符號 |
由表格可知不等式的解集為 .
小明將上述探究過程總結如下:對于解形如 (為正整數(shù))的不等式,先將按從大到小的順序排列,再劃分的范圍,然后通過列表格的辦法,可以發(fā)現(xiàn)表格中的符號呈現(xiàn)一定的規(guī)律,利用這個規(guī)律可以求這樣的不等式的解集.
(2)請你參考小明的方法,解決下列問題:
①不等式的解集為 .
②不等式的解集為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,,,(如圖),點,分別為射線上的動點(點C、E都不與點B重合),連接AC、AE使得,射線交射線于點,設,.
(1)如圖1,當時,求AF的長.
(2)當點在點的右側時,求關于的函數(shù)關系式,并寫出函數(shù)的定義域.
(3)連接交于點,若是等腰三角形,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A是雙曲線y=在第一象限的分支上的一個動點,連結AO并延長交另一分支于點B,以AB為斜邊作等腰直角△ABC,點C在第四象限.隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=(k<0)上運動,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為深化課改,落實立德樹人目標,某學校設置了以下四門拓展性課程:A.數(shù)學思維,B.文學鑒賞,C.紅船課程,D.3D打印,規(guī)定每位學生選報一門.為了解學生的報名情況,隨機抽取了部分學生進行調查,并制作成如下兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)求這次被調查的學生人數(shù);
(2)請將條形統(tǒng)計圖補充完整;
(3)假如全校有學生1000人,請估計選報“紅船課程”的學生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com