【題目】如圖,⊙O中,PC切⊙O于點(diǎn)C,連PO交于⊙O點(diǎn)A、B,點(diǎn)F是⊙O上一點(diǎn),連PF,CDAB于點(diǎn)D,AD=2,CD=4,則PF:DF的值是(

A. 2 B. C. 5:3 D. 4:3

【答案】C

【解析】

連接AC、OC、OF、BC.由ADC∽△CDB,推出,求出DB、OA、OD,由ODC∽△OCP,推出,推出OC2=ODOP,推出OF2=ODOP,即,由∠DOF=POF,推出DOF∽△FOP,可得.

連接AC、OC、OF、BC.如圖所示:

AB是直徑,

∴∠ACB=90°,

CDAB,

∴∠ADC=BDC=90°,

∴∠ACD+CAD=90°,ACD+BCD=90°,

∴∠CAD=BCD,

∴△ADC∽△CDB,

,

,

DB=8,OA=OB=5,OD=3,

PC是切線,

OCPC,

∵∠DOC=POC,ODC=OCP,

∴△ODC∽△OCP,

,

OC2=ODOP,

OF2=ODOP,

,

∵∠DOF=POF,

∴△DOF∽△FOP,

,

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD和正方形AEFG的邊長(zhǎng)分別為2,點(diǎn)B在邊AG點(diǎn)D在線段EA的延長(zhǎng)線上,連接BE

(1)如圖1,求證DGBE

(2)如圖2,將正方形ABCD繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)當(dāng)點(diǎn)B恰好落在線段DG上時(shí),求線段BE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.

(1)求證:AB是⊙O的切線.

(2)已知AO交⊙O于點(diǎn)E,延長(zhǎng)AO交⊙O于點(diǎn)D,tanD=,求的值.

(3)(3分)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“共建環(huán)保模范城,共享綠色新重慶”,市政府強(qiáng)力推進(jìn)城市生活污水處理、生活垃圾處理設(shè)施建設(shè)改造工作.為此,某化工廠在一期工程完成后購(gòu)買了4臺(tái)甲型和5臺(tái)乙型污水處理設(shè)備,共花費(fèi)資金102萬(wàn)元,且每臺(tái)乙型設(shè)備的價(jià)格比每臺(tái)甲型設(shè)備價(jià)格少3萬(wàn)元.已知每臺(tái)甲型設(shè)備每月能處理污水240噸,每臺(tái)乙型設(shè)備每月能處理污水180噸.今年該廠二期工程即將完成,產(chǎn)生的污水將大大增加,于是該廠決定再購(gòu)買甲、乙兩型設(shè)備共12臺(tái)用于二期工程的污水處理,預(yù)算本次購(gòu)買資金不超過(guò)129萬(wàn)元,預(yù)計(jì)二期工程完成后每月將產(chǎn)生不少于2220噸污水.

1)請(qǐng)你計(jì)算每臺(tái)甲型設(shè)備和每臺(tái)乙型設(shè)備的價(jià)格各是多少萬(wàn)元?

2)請(qǐng)你求出用于二期工程的污水處理設(shè)備的所有購(gòu)買方案;

3)請(qǐng)你說(shuō)明在(2)的所有方案中,哪種購(gòu)買方案的總花費(fèi)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA,PB分別與O相切于A,B兩點(diǎn),ACB=60°.

(1)求P的度數(shù);

(2)若O的半徑長(zhǎng)為4cm,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過(guò)點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(m,-2).

(1)求△AHO的周長(zhǎng);

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

【答案】(1)△AHO的周長(zhǎng)為12;(2) 反比例函數(shù)的解析式為y=一次函數(shù)的解析式為y=-x+1.

【解析】試題分析: 1)根據(jù)正切函數(shù),可得AH的長(zhǎng),根據(jù)勾股定理,可得AO的長(zhǎng),根據(jù)三角形的周長(zhǎng),可得答案;

2)根據(jù)待定系數(shù)法,可得函數(shù)解析式.

試題解析:(1)由OH=3tan∠AOH=,得

AH=4.即A-4,3).

由勾股定理,得

AO==5,

△AHO的周長(zhǎng)=AO+AH+OH=3+4+5=12

2)將A點(diǎn)坐標(biāo)代入y=k≠0),得

k=-4×3=-12

反比例函數(shù)的解析式為y=;

當(dāng)y=-2時(shí),-2=,解得x=6,即B6,-2).

A、B點(diǎn)坐標(biāo)代入y=ax+b,得

,

解得,

一次函數(shù)的解析式為y=-x+1

考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題.

型】解答
結(jié)束】
21

【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,過(guò)點(diǎn)C作CE⊥DB交DB的延長(zhǎng)線于點(diǎn)E,直線AB與CE相交于點(diǎn)F.

(1)求證:CF為⊙O的切線;

(2)填空:當(dāng)∠CAB的度數(shù)為________時(shí),四邊形ACFD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的弦,OP⊥OAAB于點(diǎn)P,過(guò)點(diǎn)B的直線交OP的延長(zhǎng)線于點(diǎn)C,且CP=CB

1)求證:BC⊙O的切線;

2)若⊙O的半徑為,OP=1,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,作Rt△ABC,邊BC在x軸上,點(diǎn)D為斜邊AC的中點(diǎn),連結(jié)DB并延長(zhǎng)交y軸于點(diǎn)E,若△BCE的面積為4,則k的值是(  )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知為正方形的中心,分別延長(zhǎng)到點(diǎn), 到點(diǎn),使, ,連結(jié),將△繞點(diǎn)逆時(shí)針旋轉(zhuǎn)角得到△(如圖2).連結(jié)、

(Ⅰ)探究的數(shù)量關(guān)系,并給予證明;

(Ⅱ)當(dāng) 時(shí),求:

的度數(shù);

的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案