【題目】如圖,拋物線軸交于兩點(點在點的左側(cè)),交軸于點,將直線以點為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn),交軸于點,交拋物線于另一點.直線的解析式為:

是第一象限內(nèi)拋物線上一點,當的面積最大時,在線段上找一點(不與重合),使的值最小,求出點的坐標,并直接寫出的最小值;

如圖,將沿射線方向以每秒個單位的速度平移,記平移后的,平移時間為秒,當為等腰三角形時,求的值.

【答案】(1)點的坐標為.的最小值為.2

【解析】

過點軸于點,交直線于點,過點于點.

設點的坐標為,則點的坐標為,表示出FK,,根據(jù)二次函數(shù)的性質(zhì)即可求解.

連接,過點軸于點,則,.的坐標為.求出點的坐標為.

,分三種情況進行討論即可.

解:過點軸于點,交直線于點(如答圖1),

過點于點.

設點的坐標為,

則點的坐標為

,

,

,

,

時,有最大值.

此時點的坐標為.

是線段上一點,作軸于點于點,

,.

過點的垂線,交于點,此時的值最小,

此時點的坐標為.

的最小值為.

連接,過點軸于點(如答圖2

,.

的坐標為.

求出點的坐標為.

,

時,

,解得.

時,

,解得(舍去)

時,

,解得,

綜上所述,當為等腰三角形時,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,PN分別為DE,DCBC的中點.

(1)觀察猜想

1中,線段PMPN的數(shù)量關系是 ,位置關系是 ;

(2)探究證明

ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李老師是我區(qū)IDJP課題研究的主要成員之一,一天他在視頻微課中提出了以下問題:如圖,AB,CD為圓形紙片中兩條互相垂直的直徑,將圓形紙片沿EF折疊,使B與圓心M重合,折痕EFAB相交于N連結(jié)AEAF.李老師提出兩個猜想和一個問題,請你證明或解答出來:

①四邊形MEBF是菱形;

②△AEF為等邊三角形;

③求SAEFS

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】E-learning即為在線學習,是一種新型的學習方式.某網(wǎng)站提供了A、B兩種在線學習的收費方式.A種:在線學習10小時(包括10小時)以內(nèi),收取費用5元,超過10小時時,在收取5元的基礎上,超過部分每小時收費0.6元(不足1小時按1小時計);B種:每月的收費金額(元)與在線學習時間是(時)之間的函數(shù)關系如圖所示.

1)按照B種方式收費,當時,求關于的函數(shù)關系式.

2)如果小明三月份在這個網(wǎng)站在線學習,他按照A種方式支付了20元,那么在線學習的時間最多是多少小時?如果該月他按照B 種方式付費,那么他需要多付多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一批貨物準備運往某地,有甲、乙、丙三輛卡車可雇用.已知甲、乙、丙三輛車每次運貨量不變,且甲、乙兩車單獨運完這批貨物分別用次;甲、丙兩車合運相同次數(shù),運完這批貨物,甲車共運噸;乙、丙兩車合運相同次數(shù),運完這批貨物乙車共運噸,現(xiàn)甲、乙、丙合運相同次數(shù)把這批貨物運完,貨主應付甲車主的運費為___________ .(按每噸運費元計算)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yx2+bx+cx軸交于點AB3,0),與y軸交于點C0,3).

1)求拋物線的解析式;

2)若點M是拋物線上在x軸下方的動點,過MMNy軸交直線BC于點N,求線段MN的最大值;

3E是拋物線對稱軸上一點,F是拋物線上一點,是否存在以A,B,E,F為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解全區(qū)5000名初中畢業(yè)生的體重情況,隨機抽測了200名學生的體重,頻率分布如圖所示(每小組數(shù)據(jù)可含最小值,不含最大值),其中從左至右前四個小長方形的高依次為0.02、0.030.04、0.05,由此可估計全區(qū)初中畢業(yè)生的體重不小于60千克的學生人數(shù)約為___人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,,,,點是邊上一個動點(不與重合),以點為圓心,為半徑作,與射線交于點;以點為圓心,為半徑作,設

1)如圖,當點與點重合時,求的值;

2)當點在線段上,如果的另一個交點在線段上時,設,試求之間的函數(shù)解析式,并寫出的取值范圍;

3)在點的運動的過程中,如果與線段只有一個公共點,請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在梯形ABCD中,ADBC,AB=BC,DCBC,且AD=1,DC=3,點P為邊AB上一動點,以P為圓心,BP為半徑的圓交邊BC于點Q

(1)AB的長;

(2)BQ的長為時,請通過計算說明圓P與直線DC的位置關系.

查看答案和解析>>

同步練習冊答案