【題目】某校為調(diào)查“停課不停學”期間九年級學生平均每天上網(wǎng)課時長,隨機抽取了名九年級學生做網(wǎng)絡(luò)問卷調(diào)查.共四個選項:小時以下)、小時)、小時), 小時以上),每人只能選一
項.并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖.
被調(diào)查學生平均每天上網(wǎng)課時間統(tǒng)計表
時長 | 所占百分比 |
合計 |
根據(jù)以上信息,解答下列問題:
, ,
補全條形統(tǒng)計圖;
該校有九年級學生名,請你估計仝校九年級學生平均每天上網(wǎng)課時長在小時及以上的共多少名;
在被調(diào)查的對象中,平均每天觀看時長超過小時的,有名來自九班,名來自九班,其余都來自九班,現(xiàn)教導(dǎo)處準備從選項中任選兩名學生進行電話訪談,請用列表法或畫樹狀圖的方法求所抽取的名學生恰好來自同一個班級的概率.
【答案】(1)28,10;(2) 圖形見解析;(3)360人;(4)
【解析】
(1)根據(jù)A的人數(shù)求出A所占的比例,即可得到a的值,進而可得b的值;
(2)分別求出C、D的人數(shù),然后補全條形統(tǒng)計圖即可;
(3)用總?cè)藬?shù)乘以C、D所占的比例即可;
(4)畫樹狀圖得出所有情況數(shù),找出符合題意的情況數(shù),根據(jù)概率公式求解即可.
解:(1)14÷50×100%=28%,1-28%-22%-40%=10%,
故a=28,b=10;
(2)C的人數(shù)為:50×40%=20(人),D的人數(shù)為:50×10%=5(人),
補全條形統(tǒng)計圖如圖:
(3)(人),
答:估計全校九年級學生平均每天上網(wǎng)課時長在小時及以上的共有人;
由選項中共有名學生可知,名來自九班,名來自九班,名來自九班,
畫樹狀圖如下:
共有種等可能的情況,其中兩名學生來自同一個班級的情況有種,
故所抽取的名學生恰好來自同一個班級的概率.
科目:初中數(shù)學 來源: 題型:
【題目】2010年5月1日,第41屆世博會在上海舉辦,世博知識在校園迅速傳播.小明同學就本班學生對世博知識的了解程度進行了一次調(diào)查統(tǒng)計,下圖是他采集數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖(A:不了解,B:一般了解,C:了解較多,D:熟悉).請你根據(jù)圖中提供的信息解答以下問題:
(1)求該班共有多少名學生;
(2)在條形統(tǒng)計圖中,將表示“一般了解”的部分補充完整;
(3)在扇形統(tǒng)計圖中,計算出“了解較多”部分所對應(yīng)的圓心角的度數(shù);
(4)從該班中任選一人,其對世博知識的了解程度為“熟悉”的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點,點B是軸正半軸上一點,連接,過點A作,交軸于點C,點D是點C關(guān)于點A的對稱點,連接,以為直徑作交于點E,連接AE并延長交軸于點F,連接DF.
(1)求線段AE的長;
(2)若,求的值;
(3)若與相似,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)銷甲、乙兩種商品現(xiàn)有如下信息:信息1:甲、乙兩種商品的進貨單價之和是3元;信息2:甲商品零售單價比進貨單價多1元,乙商品零售單價比進貨單價的2倍少1元;信息3:按零售單價購買甲商品3件和乙商品2件,共付了12元.請根據(jù)以上信息,解答下列問題:
求甲、乙兩種商品的零售單價;
該商店平均每天賣出甲商品500件和乙商品1200件經(jīng)調(diào)查發(fā)現(xiàn),甲種商品零售單價每降元,甲種商品每天可多銷售100件商店決定把甲種商品的零售單價下降元在不考慮其他因素的條件下,當m為多少時,商店每天銷售甲、乙兩種商品獲取的總利潤為1700元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0),經(jīng)過點(1.0),對稱軸l如圖所示,若M=a+b﹣c,N=2a﹣b,P=a+c,則M,N,P中,值小于0的數(shù)有( )個.
A.2B.1C.0D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的半徑為5,△ABC是⊙O的內(nèi)接三角形,AB=8,.過點B作⊙O的切線BD,過點A作AD⊥BD,垂足為D.
(1)求證:∠BAD+∠C=90°
(2)求線段AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com