【題目】某市糧店出售某種大米,上半月的售價為每公斤元,下半月的售價為每公斤元.有一餐飲業(yè)老板每個月要向該店采購兩次大米,且上半月購買一次,下半月購買一次.該老板結(jié)合市場米價情況,設(shè)計(jì)兩套采購方案:A.每次購買100公斤大米;B.每次購買100元錢的大米.請你運(yùn)用所學(xué)知識分析一下,該老板采用哪種方式購買較劃算.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人分別騎自行車和摩托車沿相同路線由A地到相距80千米的B地,行駛過程中的函數(shù)圖象如圖所示,請根據(jù)圖象回答下列問題:
(1)甲先出發(fā)______小時后,乙才出發(fā);大約在甲出發(fā)______小時后,兩人相遇,這時他們離A地_______千米.
(2)兩人的行駛速度分別是多少?
(3)分別寫出表示甲、乙的路程y(千米)與時間x(小時)之間的函數(shù)表達(dá)式(不要求寫出自變量的取值范圍).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.求:∠DCE和∠DCA的度數(shù).
請將以下解答補(bǔ)充完整,
解:因?yàn)?/span>∠DAB+∠D=180°
所以DC∥AB__________
所以∠DCE=∠B__________
又因?yàn)?/span>∠B=95°,
所以∠DCE=________°;
因?yàn)?/span>AC平分∠DAB,∠CAD=25°,根據(jù)角平分線定義,
所以∠CAB=________=________°,
因?yàn)?/span>DC∥AB
所以∠DCA=∠CAB,__________
所以∠DCA=________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知直線EF∥GH,點(diǎn)A、C在直線EF上,點(diǎn)B在直線GH上,連接AB、BC,∠ACB=50°,∠BAC=30°,BP平分∠ABH,CM平分∠BCF,BP與CM的反向延長線相交于P.
(1)求∠BPC的度數(shù);
(2)若將圖①中的線段AB沿EF向左平移到A1B1,如圖②所示位置,此時B1P平分∠A1B1H,CM平分∠BCF,B1P與CM的反向延長線相交于P,求∠B1PC的度數(shù).
(3)若將圖①中的線段AB沿EF向右平移到A1B1,如圖③所示位置,此時B1N平分∠A1B1B,CP平分∠BCF, CP與B1N的反向延長線相交于P,求∠B1PC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 ABCD中,∠DAB=60°,點(diǎn)E,F(xiàn)分別在CD,AB的延長線上,且AE=AD,CF=CB.
(1)求證:四邊形AFCE是平行四邊形.
(2)若去掉已知條件的“∠DAB=60°,上述的結(jié)論還成立嗎 ”若成立,請寫出證明過程;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富校園文化,促進(jìn)學(xué)生全面發(fā)展.我市某區(qū)教育局在全區(qū)中小學(xué)開展“書法、武術(shù)、黃梅戲進(jìn)校園”活動。今年3月份,該區(qū)某校舉行了“黃梅戲”演唱比賽,比賽成績評定為A,B,C,D,E五個等級,該校部分學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中信息,解答下列問題.
(1)求該校參加本次“黃梅戲”演唱比賽的學(xué)生人數(shù);
(2)求扇形統(tǒng)計(jì)圖B等級所對應(yīng)扇形的圓心角度數(shù);
(3)已知A等級的4名學(xué)生中有1名男生,3名女生,現(xiàn)從中任意選取2名學(xué)生作為全校訓(xùn)練的示范者,請你用列表法或畫樹狀圖的方法,求出恰好選1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中點(diǎn),E是邊AD上的動點(diǎn),EG的延長線與BC的延長線交于點(diǎn)F,連接CE,DF.
(1)求證:四邊形CEDF是平行四邊形;
(2)①AE為何值時四邊形CEDF是矩形?為什么?
②AE為何值時四邊形CEDF是菱形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在四邊形ABCD中,AE⊥BD于E,CF⊥BD于F,AE=CF,BF=DE.求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
對于任意一個三位數(shù)正整數(shù)n,如果n的各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“陌生數(shù)”,將一個“陌生數(shù)”的三個數(shù)位上的數(shù)字交換順序,可以得到5個不同的新“陌生數(shù)”,把這6個陌生數(shù)的和與111的商記為M(n).例如n=123,可以得到132.213.231.312.321這5個新的“陌生數(shù)”,這6個“陌生數(shù)”的和為123+132+213+231+312+321=1332,因?yàn)?/span>,所以M(123)=12.
(1)計(jì)算:M(125)和M(361)的值;
(2)設(shè)s和t都是“陌生數(shù)”,其中4和2分別是s的十位和個位上的數(shù)字,2和5分別是t的百位和個位上的數(shù)字,且t的十位上的數(shù)字比s的百位上的數(shù)字小2;規(guī)定:.若,則k的值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com