【題目】解方程|x-1|+|x+2|=5.由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點對應的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對應點在1的右邊或-2的左邊,若x對應點在1的右邊,由圖可以看出x=2;同理,若x對應點在-2的左邊,可得x=-3,故原方程的解是x=2或x=-3.
參考閱讀材料,解答下列問題:
(1)方程|x+3|=4的解為________.
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|+|x+4|≥a對任意的x都成立,求a的取值范圍.
【答案】(1) 1和-7;(2) x≥4或x≤-5(3) a≤7
【解析】
(1)根據(jù)已知條件可以得到絕對值方程,可以轉化為數(shù)軸上,到某個點的距離的問題,即可求解;
(2)不等式|x-3|+|x+4|≥9表示到3與-4兩點距離的和,大于或等于9個單位長度的點所表示的數(shù);
(3)|x-3|+|x+4|≥a對任意的x都成立,即求到3與-4兩點距離的和最小的數(shù)值.
(1)方程|x+3|=4的解就是在數(shù)軸上到-3這一點,距離是4個單位長度的點所表示的數(shù),是1和-7.故解是1和-7;
(2)由絕對值的幾何意義知,該方程表示求在數(shù)軸上與3和-4的距離之和為大于或等于9的點對應的x的值.在數(shù)軸上,即可求得x≥4或x≤-5.
(3)|x-3|+|x+4|即表示x的點到數(shù)軸上與3和-4的距離之和,
當表示對應x的點在數(shù)軸上3與-4之間時,距離的和最小,是7.故a≤7.
科目:初中數(shù)學 來源: 題型:
【題目】某校在開學期間,打算購置一批辦公桌和椅子,現(xiàn)在同一款式的辦公桌每張定價200元,椅子每張40元.國慶節(jié)期間,有兩個商店決定開展促銷活動,活動期間向客戶提供優(yōu)惠如下:
甲商店:買一張辦公桌送一張椅子;
乙商店:辦公桌和椅子都按定價的九折付款.
現(xiàn)在學校要購買20張辦公桌和張椅子().
(1)用含的代數(shù)式表示學校分別在這兩個商店購買這一批桌椅所需的費用;
(2)購買椅子多少張時,兩個商店的費用相等?
(3)現(xiàn)在學校要購買30張椅子,通過計算說明選擇在哪個商店購買較為合算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段,動點以的速度從在線段上運動,到達點后,停止運動;動點以的速度從在線段上運動,到達點后,停止運動.若動點同時出發(fā),設點的運動時間是(單位:)時,兩個動點之間的距離為S(單位:),則能表示與的函數(shù)關系的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】早晨,小剛沿著通往學校唯一的一條路(直路)上學,途中發(fā)現(xiàn)忘帶飯盒,停下往家里打電話,媽媽接到電話后帶上飯盒馬上趕往學校,同時小剛返回,兩人相遇后,小剛立即趕往學校,媽媽回家,15分鐘媽媽到家,再經(jīng)過3分鐘小剛到達學校,小剛始終以100米/分的速度步行,小剛和媽媽的距離y(單位:米)與小剛打完電話后的步行時間t(單位:分)之間的函數(shù)關系如圖,下列四種說法:
①打電話時,小剛和媽媽的距離為1250米;
②打完電話后,經(jīng)過23分鐘小剛到達學校;
③小剛和媽媽相遇后,媽媽回家的速度為150米/分;
④小剛家與學校的距離為2550米.其中正確的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解下列方程:
(1)2(10﹣0.5y)=﹣(1.5y+2)
(2)(x﹣5)=3﹣(x﹣5)
(3)﹣1=
(4)x﹣(x﹣9)=[x+(x﹣9)]
(5) -=0.5x+2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】青島市某大酒店豪華間實行淡季、旺季兩種價格標準,旺季每間價格比淡季上漲 .下表是去年該酒店豪華間某兩天的相關記錄:
淡季 | 旺季 | |
未入住房間數(shù) | 10 | 0 |
日總收入(元) | 24000 | 40000 |
(1)該酒店豪華間有多少間?旺季每間價格為多少元?
(2)今年旺季來臨,豪華間的間數(shù)不變.經(jīng)市場調查發(fā)現(xiàn),如果豪華間仍舊實行去年旺季價格,那么每天都客滿;如果價格繼續(xù)上漲,那么每增加25元,每天未入住房間數(shù)增加1間.不考慮其他因素,該酒店將豪華間的價格上漲多少元時,豪華間的日總收入最高?最高日總收入是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BE,DF分別是∠ABC,∠ADC的平分線.
(1)∠1與∠2有什么關系,為什么?
(2)BE與DF有什么關系?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com