【題目】如圖,線段,動點以的速度從在線段上運動,到達點后,停止運動;動點以的速度從在線段上運動,到達點后,停止運動.若動點同時出發(fā),設(shè)點的運動時間是(單位:)時,兩個動點之間的距離為S(單位:),則能表示與的函數(shù)關(guān)系的是( )
A. B.
C. D.
【答案】D
【解析】
根據(jù)題意可以得到點P運動的快,點Q運動的慢,可以算出動點P和Q相遇時用的時間和點Q到達終點時的時間,從而可以解答本題.
:設(shè)點Q的運動時間是t(單位:s)時,兩個動點之間的距離為s(單位:cm),
6=2t+t,解得:t=2,即t=2時,P、Q相遇,即S=0,.
P到達B點的時間為:6÷2=3s,此時,點Q距離B點為:3,即S=3
P點全程用時為12÷2=6s,Q點全程用時為6÷1=6s,即P、Q同時到達A點
由上可得,剛開始P和Q兩點間的距離在越來越小直到相遇時,它們之間的距離變?yōu)?/span>0,此時用的時間為2s;
相遇后,在第3s時點P到達B點,從相遇到點P到達B點它們的距離在變大,1s后P點從B點返回,點P繼續(xù)運動,兩個動點之間的距離逐漸變小,同時達到A點.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.圓內(nèi)接正六邊形的邊長與該圓的半徑相等
B.在平面直角坐標系中,不同的坐標可以表示同一點
C.一元二次方程ax2+bx+c=0(a≠0)一定有實數(shù)根
D.將△ABC繞A點按順時針方向旋轉(zhuǎn)60°得△ADE,則△ABC與△ADE不全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線AM∥BN,點E,F,D在射線AM上,點C在射線BN上,且∠BCD=∠A,BE平分∠ABF,BD平分∠FBC.
(1)求證:AB∥CD.
(2)如果平行移動CD,那么∠AFB與∠ADB的比值是否發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這兩個角的比值.
(3)如果∠A=100°,那么在平行移動CD的過程中,是否存在某一時刻,使∠AEB=∠BDC?若存在,求出此時∠AEB的度數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是線段AB上一點,AB=4cm,AO=1cm,若線段AB繞點O順時針旋轉(zhuǎn)120°到線段A′B′的位置,則線段AB在旋轉(zhuǎn)過程中掃過的圖形的面積為 cm2 . (結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點F,∠1+∠2=90°.求證:
(1)AB∥CD;
(2)∠2+∠3=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點的坐標分別為A(﹣3,4),B(﹣5,2),C(﹣2,1).
(1)畫出△ABC關(guān)于y軸對稱圖形△A1B1C1;
(2)畫出將△ABC繞原點O逆時針方向旋轉(zhuǎn)90°得到的△A2B2C2;
(3)求(2)中線段OA掃過的圖形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程|x-1|+|x+2|=5.由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點對應(yīng)的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對應(yīng)點在1的右邊或-2的左邊,若x對應(yīng)點在1的右邊,由圖可以看出x=2;同理,若x對應(yīng)點在-2的左邊,可得x=-3,故原方程的解是x=2或x=-3.
參考閱讀材料,解答下列問題:
(1)方程|x+3|=4的解為________.
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|+|x+4|≥a對任意的x都成立,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,AB∥CD,那么∠A+∠C= 度
(2)如圖②,AB∥CD∥EF,那么∠A+∠AEC+∠C= 度
(3)如圖③,AB∥GH∥MN∥CD,那么∠A+∠AGM+∠GMC+∠C=度,并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com