精英家教網 > 初中數學 > 題目詳情

【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,給出下列五條結論: abc<0;4ac-b2<0;4a+c<2b;3b+2c<0;m(am+b)+b<a(m≠-1).其中正確的結論是_________(把所有正確的結論的序號都填寫在橫線上)

【答案】②,④,⑤

【解析】

根據拋物線開口方向、對稱軸、與y軸交點可判斷①;根據拋物線與x軸交點個數可判斷②;根據x=0x=-2關于對稱軸x=-1對稱,且x=0y>0,可判斷③;根據x=1時,y<0,且對稱軸為x=-1可判斷④;由拋物線在x=-1時有最大值,可判斷⑤.

①由拋物線圖象得:開口向下,即a<0;c>0,-=-1<0,即b=2a<0,
∴abc>0,選項①錯誤;
②∵拋物線圖象與x軸有兩個交點,
∴△=b2-4ac>0,即4ac-b2<0,選項②正確;
③∵拋物線對稱軸為x=-1,且x=0時,y>0,
∴當x=-2時,y=4a-2b+c>0,即4a+c>2b,選項③錯誤;
④∵拋物線對稱軸x=-1,即-=-1,
∴a=b
由圖象可知,當x=1時,y=a+b+c=+c<0,
故3b+2c<0,選項④正確;
⑤由圖象可知,當x=-1時y取得最大值,
∵m≠-1,
∴am2+bm+c<a-b+c,即am2+bm+b<a,
∴m(am+b)+b<a,選項⑤正確;
故答案是:②④⑤.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知ADBC,ABBC,ABBC4,P為線段AB上一動點.將△BPC沿PC翻折至△EPC,延長CE交射線AD于點D

1)如圖1,當PAB的中點時,求出AD的長

2)如圖2,延長PEAD于點F,連接CF,求證:∠PCF45°

3)如圖3,∠MON45°,在∠MON內部有一點Q,且OQ8,過點QOQ的垂線GH分別交OM、ONG、H兩點.設QGx,QHy,直接寫出y關于x的函數解析式

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知⊙O的直徑為10,點A,點B,點C⊙O上,∠CAB的平分線交⊙O于點D.

(Ⅰ)如圖,若BC⊙O的直徑,AB=6,求AC,BD,CD的長;

(Ⅱ)如圖,若∠CAB=60°,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=-x2+bx+c經過點B(-1,0)和點C(2,3).

(1)求此拋物線的函數表達式;

(2)如果此拋物線上下平移后過點(-2,-1),請直接寫出平移的方向和平移的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】函數y=ax2﹣2x+1和y=ax+a(a是常數,且a0)在同一直角坐標系中的圖象可能是(

A.

B.

C.

D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知二次函數的圖象過A2,0),B0,-1)和C4,5)三點。

1)求二次函數的解析式;

2)設二次函數的圖象與軸的另一個交點為D,求點D的坐標;

3)在同一坐標系中畫出直線,并寫出當在什么范圍內時,一次函數的值大于二次函數的值。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個盒子里裝有不多于顆糖,如果每次顆,顆,顆或顆的取出,最終盒內都只剩下一顆糖,如果每次以顆的取出,那么正好取完,則盒子里共有___顆糖.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某青年旅社有60間客房供游客居住,在旅游旺季,當客房的定價為每天200元時,所有客房都可以住滿.客房定價每提高10元,就會有1個客房空閑,對有游客入住的客房,旅社還需要對每個房間支出20/每天的維護費用,設每間客房的定價提高了x元.

(1)填表(不需化簡)

入住的房間數量

房間價格

總維護費用

提價前

60

200

60×20

提價后

  

  

  

(2)若該青年旅社希望每天純收入為14000元且能吸引更多的游客,則每間客房的定價應為多少元?(純收入=總收入﹣維護費用)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數的圖象如圖所示,有下列結論:abc0;a+cb3a+c0;a+bmam+b)(其中m≠1),其中正確的結論有______

查看答案和解析>>

同步練習冊答案