【題目】如圖,已知在矩形ABCD中,MAD邊的中點(diǎn),BMAC垂直,交直線AC于點(diǎn)N,連接DN,則下列四個(gè)結(jié)論中:CN2AN;DNDCtanCADAMN∽△CAB.正確的有( 。

A.①②③④B.①②③C.①②④D.②③④

【答案】C

【解析】

通過證明△AMN∽△CBN,可得,可證CN=2AN;過DDHBMACG,可證四邊形BMDH是平行四邊形,可得BH=MD=BC,由直角三角形的性質(zhì)和等腰三角形的性質(zhì)可得DN=DC;通過證明△ABM∽△BCA,可得,可求AB=BC,即可得tanDAC=;由平行線性質(zhì)可得∠DAC=ACB,∠ABC=ANM=90°,可證△AMN∽△CAB,則可求解.

AD//BC

∴△AMN∽△CBN,

MAD邊的中點(diǎn),

AMMDADBC,

CN2AN,故正確;

如圖,過DDH//BMACG,

DH//BM,BMAC,

DHAC

DH//BM,AD//BC

四邊形BMDH是平行四邊形,

BHMDADBC,

BHCH,

∵∠BNC90°

NHHC,

DHAC,

DHNC的垂直平分線,

DNCD,故正確;

AD//BC,

∴∠DAC=∠BCA,

∵∠BAC+ACB90°,∠DAC+AMB90°,

∴∠BAC=∠AMB,

∵∠BAM=∠ABC,

∴△ABM∽△BCA

,

AB2BC2,

ABBC,

tanDACtanACB

tanDAC,故③錯(cuò)誤,

四邊形ABCD是矩形,

AD//BC,ABC90°,ADBC

∴∠DACACB,

ABCANM90°,

∴△AMN∽△CAB,故正確;

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,ABO的直徑,弦BC、AF相交于點(diǎn)E,過點(diǎn)EEDAB,∠AEC=∠BED

1)如圖1,求證:;

2)如圖2,當(dāng)∠BAF45°時(shí),OCAF于點(diǎn)H,作FGBH于點(diǎn)Q,交AB于點(diǎn)G,連接GH,求證:∠AGH=∠BGF;

3)如圖3,在(2)的條件下,射線HGO交于點(diǎn)P,過點(diǎn)PPKBHAB于點(diǎn)M,垂足為點(diǎn)K,點(diǎn)NBH的中點(diǎn),MN,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+4的圖象與x軸交于兩點(diǎn)A、B,與y軸交于點(diǎn)C,且A(1,0)B(4,0)

(1)求此二次函數(shù)的表達(dá)式;

(2)如圖1,拋物線的對稱軸mx軸交于點(diǎn)E,CDm,垂足為D,點(diǎn)F(,0),動點(diǎn)N在線段DE上運(yùn)動,連接CFCN、FN,若以點(diǎn)C、DN為頂點(diǎn)的三角形與△FEN相似,求點(diǎn)N的坐標(biāo);

(3)如圖2,點(diǎn)M在拋物線上,且點(diǎn)M的橫坐標(biāo)是1,點(diǎn)P為拋物線上一動點(diǎn),若∠PMA=45°,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是等邊三角形ABC內(nèi)的一點(diǎn),∠AOB=130°,BOC=α.將△BOC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°得到△ADC,連接OD.

(1)判斷△COD的形狀,并加以說明理由.

(2)若AD=1,OC=,OA=時(shí),求α的度數(shù).

(3)探究:當(dāng)α為多少度時(shí),△AOD是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)AB分別在x軸、y軸的正半軸上,OA=4,AB=5,點(diǎn)D在反比例函數(shù)k>0)的圖象上,,點(diǎn)Py軸負(fù)半軸上,OP=7.

(1)求點(diǎn)B的坐標(biāo)和線段PB的長;

(2)當(dāng)時(shí),求反比例函數(shù)的解析式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是學(xué)生小金家附近的一塊三角形綠化區(qū)的示意圖,為增強(qiáng)體質(zhì),他每天早晨都沿著綠化區(qū)周邊小路AB、BCCA跑步小路的寬度不計(jì)觀測得點(diǎn)B在點(diǎn)A的南偏東方向上,點(diǎn)C在點(diǎn)A的南偏東的方向上,點(diǎn)B在點(diǎn)C的北偏西方向上,AC間距離為400問小金沿三角形綠化區(qū)的周邊小路跑一圈共跑了多少米?

參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿ADB1cm/s的速度勻速運(yùn)動到點(diǎn)B.圖②是點(diǎn)F運(yùn)動時(shí),△FBC的面積ycm)隨時(shí)間xs)變化的關(guān)系圖象,則a的值是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)、分別在邊、上,交于點(diǎn),若平分,

1)求證:;

2)若,交邊的延長線于點(diǎn),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在任意四邊形ABCD,AC,BD是對角線,E、FG、H分別是線段BD、BCAC、AD上的點(diǎn),對于四邊形EFGH的形狀,某班的學(xué)生在一次數(shù)學(xué)活動課中,通過動手實(shí)踐探索出如下結(jié)論,其中錯(cuò)誤的是( )

A. 當(dāng)E,F,G,H是各條線段的中點(diǎn)時(shí),四邊形EFGH為平行四邊形

B. 當(dāng)E,F,G,H是各條線段的中點(diǎn)ACBD時(shí),四邊形EFGH為矩形

C. 當(dāng)E,F,GH是各條線段的中點(diǎn),AB=CD時(shí)四邊形EFGH為菱形

D. 當(dāng)E,F,G,H不是各條線段的中點(diǎn)時(shí)四邊形EFGH可以為平行四邊形

查看答案和解析>>

同步練習(xí)冊答案