【題目】如圖,點(diǎn)O是等邊三角形ABC內(nèi)的一點(diǎn),∠AOB=130°,BOC=α.將△BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得到△ADC,連接OD.

(1)判斷△COD的形狀,并加以說(shuō)明理由.

(2)若AD=1,OC=,OA=時(shí),求α的度數(shù).

(3)探究:當(dāng)α為多少度時(shí),△AOD是等腰三角形?

【答案】(1)COD是等邊三角形,理由見(jiàn)解析;(2)α=150°;(3)α100°、130°、115°時(shí),△AOD為等腰三角形.

【解析】

(1)根據(jù)旋轉(zhuǎn)得出CO=CD,DCO=60°,根據(jù)等邊三角形的判定推出即可.
(2)根據(jù)三條邊的關(guān)系得到AOD為直角三角形,得到∠ADO=90°,從而求出α的值.
(3)用∠α表示∠ADO、AOD、DAO,分為三種情況:①∠ADO=AOD,②∠ADO=OAD,③∠OAD=AOD,代入求出即可.

(1)∵△ADC≌△BOC,

CO=CD,

∵將BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°ADC,

∴∠DCO=60°,

∴△COD是等邊三角形.

(2)AD=1,OC=,OA=

OA2=AD2+OC2

∴△AOD是直角三角形

∴∠ADO=90°

α=90°+60°=150°

(3)AOD=360°﹣AOB﹣α﹣COD=360°﹣130°﹣α﹣60°=170°﹣α,

ADO=ADC﹣CDO=α﹣60°,

OAD=180°﹣AOD﹣ADO=180°﹣(α﹣60°)﹣(170°﹣α)=70°,

若∠ADO=AOD,即∠α﹣60°=170°﹣α,

解得:∠α=115°;

若∠ADO=OAD,則∠α﹣60°=70°,

解得:∠α=130°;

若∠OAD=AOD,即70°=170°﹣α,

解得:∠α=100°;

即當(dāng)α100°、130°、115°時(shí),AOD為等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠DAB=90°,DB=DC,點(diǎn)E、F分別為DBBC的中點(diǎn),連接AE、EF、AF

1)求證:AE=EF;

2)當(dāng)AF=AE時(shí),設(shè)∠ADB=α,∠CDB=β,求α,β之間的數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我們認(rèn)識(shí)的多邊形中有很多軸對(duì)稱圖形.有些多邊形,邊數(shù)不同對(duì)稱軸的條數(shù)也不同;有些多邊形邊數(shù)相同但卻有不同數(shù)目的對(duì)稱軸.回答下列問(wèn)題

(1)非等邊的等腰三角形有________條對(duì)稱軸,非正方形的長(zhǎng)方形有________條對(duì)稱軸,等邊三角形有___________條對(duì)稱軸;

(2)觀察下列一組凸多邊形實(shí)線畫(huà)出),它們的共同點(diǎn)是只有1條對(duì)稱軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的仿照類似的修改方式,請(qǐng)你在圖1-4和圖1-5,分別修改圖1-2和圖1-3,得到一個(gè)只有1條對(duì)稱軸的凸五邊形,并用實(shí)線畫(huà)出所得的凸五邊形

(3)小明希望構(gòu)造出一個(gè)恰好有2條對(duì)稱軸的凸六邊形,于是他選擇修改長(zhǎng)方形,2中是他沒(méi)有完成的圖形,請(qǐng)用實(shí)線幫他補(bǔ)完整個(gè)圖形;

(4)請(qǐng)你畫(huà)一個(gè)恰好有3條對(duì)稱軸的凸六邊形并用虛線標(biāo)出對(duì)稱軸

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,,點(diǎn)P由點(diǎn)A出發(fā)沿方向向終點(diǎn)B以每秒的速度勻速移動(dòng),點(diǎn)Q由點(diǎn)B出發(fā)沿方向向終點(diǎn)C以每秒的速度勻速移動(dòng),速度為.如果動(dòng)點(diǎn)同時(shí)從點(diǎn)A,B出發(fā),當(dāng)點(diǎn)P或點(diǎn)Q到達(dá)終點(diǎn)時(shí)運(yùn)動(dòng)停止.則當(dāng)運(yùn)動(dòng)幾秒時(shí),以點(diǎn)Q,BP為頂點(diǎn)的三角形與相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2-bx+3的對(duì)稱軸是直線x=-1

(1)求證:2a+b=0;

(2)若關(guān)于x的方程ax2-bx-8=0的一個(gè)根是4,求方程的另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】網(wǎng)上購(gòu)物已經(jīng)成為人們常用的一種購(gòu)物方式,售后評(píng)價(jià)特別引人關(guān)注,消費(fèi)者在網(wǎng)店購(gòu)買某種商品后,對(duì)其有

好評(píng)”、“中評(píng)”、“差評(píng)三種評(píng)價(jià),假設(shè)這三種評(píng)價(jià)是等可能的.

(1)小明對(duì)一家網(wǎng)店銷售某種商品顯示的評(píng)價(jià)信息進(jìn)行了統(tǒng)計(jì),并列出了兩幅不完整的統(tǒng)計(jì)圖.

利用圖中所提供的信息解決以下問(wèn)題:

①小明一共統(tǒng)計(jì)了 個(gè)評(píng)價(jià);

②請(qǐng)將圖1補(bǔ)充完整;

③圖2差評(píng)所占的百分比是 ;

(2)若甲、乙兩名消費(fèi)者在該網(wǎng)店購(gòu)買了同一商品,請(qǐng)你用列表格或畫(huà)樹(shù)狀圖的方法幫助店主求一下兩人中至少有一個(gè)給好評(píng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在矩形ABCD中,MAD邊的中點(diǎn),BMAC垂直,交直線AC于點(diǎn)N,連接DN,則下列四個(gè)結(jié)論中:CN2AN;DNDC;tanCAD;AMN∽△CAB.正確的有( 。

A.①②③④B.①②③C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為2的正方形ABCD在第一象限內(nèi),ABx軸,點(diǎn)A的坐標(biāo)為(5,3),己知直線l:y= x﹣2

(1)將直線l向上平移m個(gè)單位,使平移后的直線恰好經(jīng)過(guò)點(diǎn)A,求m的值

(2)在(1)的條件下,平移后的直線與正方形的邊長(zhǎng)BC交于點(diǎn)E,求ABE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中華文明,源遠(yuǎn)流長(zhǎng);中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽(tīng)寫”比賽,賽后整理參賽學(xué)生的成績(jī),將學(xué)生的成績(jī)分為A,B,CD四個(gè)等級(jí),并將結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,但均不完整.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:

1)參加比賽的學(xué)生共有____名;

2)在扇形統(tǒng)計(jì)圖中,m的值為____,表示“D等級(jí)”的扇形的圓心角為____度;

3)組委會(huì)決定從本次比賽獲得A等級(jí)的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽(tīng)寫”大賽.已知A等級(jí)學(xué)生中男生有1名,請(qǐng)用列表法或畫(huà)樹(shù)狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案