【題目】如圖(1),在中,,,點(diǎn)是斜邊的中點(diǎn),點(diǎn),分別在線段,上, 且.
(1)求證:為等腰直角三角形;
(2)若的面積為7,求四邊形的面積;
(3)如圖(2),如果點(diǎn)運(yùn)動(dòng)到的延長線上時(shí),點(diǎn)在射線上且保持,還是等腰直角三角形嗎.請(qǐng)說明理由.
【答案】(1)證明見解析;(2)3.5;(3)是,理由見解析.
【解析】
(1)由題意連接AD,并利用全等三角形的判定判定△BDE≌△ADF(ASA),進(jìn)而分析證得為等腰直角三角形;
(2)由題意分析可得S四邊形AEDF=SADF+SADE=SBDE+SCDF,以此進(jìn)行分析計(jì)算求出四邊形的面積即可;
(3)根據(jù)題意連接AD,運(yùn)用全等三角形的判定判定△BDE≌△ADF(ASA),進(jìn)而分析證得為等腰直角三角形.
解:(1)證明:如圖①,連接AD.
∵∠BAC=90,AB=AC,點(diǎn)D是斜邊BC的中點(diǎn),
∴AD⊥BC,AD=BD,
∴∠1=∠B=45°,
∵∠EDF=90°,∠2+∠3=90°,
又∵∠3+∠4=90°,
∴∠2=∠4,
在△BDE 和△ADF中,∠1=∠B,AD=BD,∠2=∠4,
∴△BDE≌△ADF(ASA),
∴DE=DF,
又∵∠EDF=90°,
∴ΔDEF為等腰直角三角形.
(2)由(1)可知DE=DF,∠C=∠6=45°,
又∵∠2+∠3=90°,∠2+∠5=90°,
∴∠3=∠5,
∴△ADE≌△CDF,
∴S四邊形AEDF=SADF+SADE=SBDE+SCDF,
∴ SABC=2 S四邊形AEDF,
∴S四邊形AEDF=3.5 .
(3)是.如圖②,連接AD.
∵∠BAC=90°,AB=AC,D是斜邊BC的中點(diǎn),
∴AD⊥BC,AD=BD ,
∴∠1=45°,
∵∠DAF=180°-∠1=180°—45°=135°,∠DBE=180°-∠ABC=180°-45°=135°,
∴∠DAF=∠DBE,
∵∠EDF=90°,
∴∠3+∠4=90°,
又∵∠2+∠3=90°,
∴∠2=∠4,
在△BDE和△ADF中,∠DAF=∠DBE,AD=BD,∠2=∠4,
∴△BDE≌△ADF(ASA),
∴DE=DF,
又∵∠EDF=90°,
∴△DEF為等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A(0,1),B(3,2),C(2,3)均在正方形網(wǎng)格的格點(diǎn)上.
(1)畫出△ABC關(guān)于x軸對(duì)稱的圖形△A1B1C1并寫出頂點(diǎn)A1,B1,C1的坐標(biāo);
(2)求△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a+b=1,ab=﹣1,設(shè)S1=a+b,S2=a2+b2,S3=a3+b3,…,Sn=an+bn
(1)計(jì)算S2.
(2)請(qǐng)閱讀下面計(jì)算S3的過程:
∵a+b=1,ab=﹣1
∴S3=a3+b3=(a+b)(a2+b2)﹣ab(a+b)=1×S2﹣(﹣1)=S2+1= .
你讀懂了嗎?請(qǐng)你先填空完成(2)中S3的計(jì)算結(jié)果,再用你學(xué)到的方法計(jì)算S4
(3)試寫出Sn﹣2,Sn﹣1,Sn三者之間的數(shù)量關(guān)系式(不要求證明,且n是不小于2的自然數(shù)),根據(jù)得出的數(shù)量關(guān)系計(jì)算S7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(a、b、c為常數(shù)且a≠0)中的x與y的部分對(duì)應(yīng)值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
給出了結(jié)論:
(1)二次函數(shù)有最小值,最小值為﹣3;
(2)當(dāng)時(shí),y<0;
(3)二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),且它們分別在y軸兩側(cè).
則其中正確結(jié)論的個(gè)數(shù)是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線、相交于點(diǎn),,半徑為的的圓心在直線上,且與點(diǎn)的距離為.如果以∕的速度,沿由向的方向移動(dòng),那么________秒種后與直線相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,Rt△ABC和Rt△ABD中,∠ACB=∠ADB=90°,E為AB中點(diǎn).
(1)若兩個(gè)直角三角形的直角頂點(diǎn)在AB的異側(cè)(如圖1),連接CD,取CD中點(diǎn)F,連接EF、DE、CE,則DE與CE數(shù)量關(guān)系為 ,EF與CD位置關(guān)系為 ;
(2)若兩個(gè)直角三角形的直角頂點(diǎn)在AB的同側(cè)(如圖2),連接CD、DE、CE.
①若∠CAB=25°,∠DBA=35°,判斷△DEC的形狀,并說明理由;
②若∠CAB+∠DBA=,當(dāng)為多少度時(shí),△DEC為等腰直角三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,頂點(diǎn)、分別在坐標(biāo)軸上,頂點(diǎn)的坐標(biāo)為,、分別是、的中點(diǎn).
(1)若反比例函數(shù)的圖象經(jīng)過點(diǎn),求該反比例函數(shù)的解析式,并通過計(jì)算判斷點(diǎn)是否在該函數(shù)的圖象上;
(2)若反比例函數(shù)的圖象與(包括邊界)有公共點(diǎn),請(qǐng)直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將一個(gè)長方形紙片沿對(duì)角線折疊.點(diǎn)落在點(diǎn)處,交于點(diǎn),已知,則折疊后重合部分的面積為( )
A.6B.8C.10D.12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com