【題目】(1)如圖 1,已知正方形 ABCD,點(diǎn) E 在 BC 上,點(diǎn) F 在 DC 上,且∠EAF=45°,則有 BE+DF= .若 AB=4,則△CEF 的周長(zhǎng)為 .
(2)如圖 2,四邊形 ABCD 中,∠BAD=∠C=90°,AB=AD,點(diǎn) E,F 分別在 BC,CD 上,且∠EAF=45°,試判斷 BE,EF,DF 之間的數(shù)量關(guān)系,并說(shuō)明理由.
【答案】(1)EF,8;(2)EF=BE+DF.
【解析】
(1)延長(zhǎng)EB至H,使BH=DF,連接AH,證△ADF≌△ABH,△FAE≌△HAE,根據(jù)全等三角形的性質(zhì)得出EF=HE=BE+HB進(jìn)而求出即可;
(2)延長(zhǎng)CB至M,使BM=DF,連接AM,證△ADF≌△ABM,證△FAE≌△MAE,即可得出答案.
(1)延長(zhǎng)EB至H,使BH=DF,連接AH,如圖1,
∵在正方形ABCD中,
∴∠ADF=∠ABH,AD=AB,
在△ADF和△ABH中,
∵,
∴△ADF≌△ABH(SAS),
∴∠BAH=∠DAF,AF=AH,
∴∠FAH=90°,
∴∠EAF=∠EAH=45°,
在△FAE和△HAE中,
∵,
∴△FAE≌△HAE(SAS),
∴EF=HE=BE+HB,
∴EF=BE+DF,
∴△CEF的周長(zhǎng)=EF+CE+CF=BE+CE+DF+CF=BC+CD=2AB=8.
(2)延長(zhǎng)CB至M,使BM=DF,連接AM,如圖2,
∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
∴∠D=∠ABM,
在△ABM和△ADF中,
,
∴△ABM≌△ADF(SAS),
∴AF=AM,∠DAF=∠BAM,
∵∠BAD=∠C=90°,∠EAF=45°,
即∠BAD=2∠EAF,
∴∠DAF+∠BAE=∠EAF,
∴∠EAB+∠BAM=∠EAM=∠EAF,
在△FAE和△MAE中,
,
∴△FAE≌△MAE(SAS),
∴EF=EM=BE+BM=BE+DF,
即EF=BE+DF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°,將∠MPN繞點(diǎn)P從PB處開(kāi)始順時(shí)針?lè)较蛐D(zhuǎn),PM交邊AB于點(diǎn)E,PN交邊AD于點(diǎn)F,當(dāng)PE旋轉(zhuǎn)至PA處時(shí),∠MPN的旋轉(zhuǎn)隨即停止.
(1)如圖2,在旋轉(zhuǎn)中發(fā)現(xiàn)當(dāng)PM經(jīng)過(guò)點(diǎn)A時(shí),PN也經(jīng)過(guò)點(diǎn)D,求證:△ABP ∽△PCD
(2)如圖3,在旋轉(zhuǎn)過(guò)程中,的值是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由
(3)設(shè)AE,連結(jié)EF,則在旋轉(zhuǎn)過(guò)程中,當(dāng)為何值時(shí),△BPE與△PEF相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E為AB上一點(diǎn)(不與A.B兩點(diǎn)重合),過(guò)點(diǎn)O,A,E的⊙I交AD于F,AB=5
(1)求⊙I的直徑的取值范圍;
(2)若⊙I的半徑為2,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)I為△ABC的內(nèi)心,連AI交△ABC的外接圓于點(diǎn)D,若AI=2CD,點(diǎn)E為弦AC的中點(diǎn),連接EI,IC,若IC=6,ID=5,則IE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“只要人人獻(xiàn)出一點(diǎn)愛(ài),世界將變成美好的人間”.某大學(xué)利用“世界獻(xiàn)血日”開(kāi)展自愿義務(wù)獻(xiàn)血活動(dòng),經(jīng)過(guò)檢測(cè),獻(xiàn)血者血型有“A、B、AB、O”四種類型,隨機(jī)抽取部分獻(xiàn)血結(jié)果進(jìn)行統(tǒng)計(jì),根據(jù)結(jié)果制作了如圖兩幅不完整統(tǒng)計(jì)圖表(表,圖):
血型統(tǒng)計(jì)表
血型 | A | B | AB | O |
人數(shù) |
| 10 | 5 |
|
(1)本次隨機(jī)抽取獻(xiàn)血者人數(shù)為 人,圖中m= ;
(2)補(bǔ)全表中的數(shù)據(jù);
(3)若這次活動(dòng)中該校有1300人義務(wù)獻(xiàn)血,估計(jì)大約有多少人是A型血?
(4)現(xiàn)有4個(gè)自愿獻(xiàn)血者,2人為O型,1人為A型,1人為B型,若在4人中隨機(jī)挑選2人,利用樹(shù)狀圖或列表法求兩人血型均為O型的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=的圖象交于A(a,-2),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)P是第一象限內(nèi)反比例函數(shù)圖象上一點(diǎn),過(guò)點(diǎn)P作y軸的平行線,交直線AB于點(diǎn)C,連接PO,若△POC的面積為3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小田同學(xué)學(xué)習(xí)反比例函數(shù)的圖象和性質(zhì)后,對(duì)新函數(shù)的圖象和性質(zhì)進(jìn)行了探究,以下是她的探究過(guò)程:.
第一步:在直角坐標(biāo)系中,作出函數(shù)的圖象;
第二步:通過(guò)列表、描點(diǎn)、連線,作出新函數(shù)的圖象
①列表:
… | -4 | -2 | -1 | 0 | 1 | 3 | 4 | 5 | 6 | … | |
… | 1 | 1.5 | 2 | 3 | 6 | -6 | -3 | -2 | -1.5 | … |
②描點(diǎn):如圖所示.
(1)請(qǐng)?jiān)趫D中,幫助小田同學(xué)完成連線的步驟;
(2)觀察圖象,發(fā)現(xiàn)函數(shù)與函數(shù)的圖象都是雙曲線,并且形狀也相同,只是位置發(fā)生了改變,由此可知,函數(shù)的圖象可由函數(shù)的圖象平移得到,請(qǐng)寫出函數(shù)的圖象是怎樣平移得到的?
(3)若點(diǎn),在函數(shù)圖象上,且,則 (選填“>”“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:
①AC=AD;②BD⊥AC;③四邊形ACED是菱形.
其中正確的個(gè)數(shù)是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com