【題目】如圖,在ABC中,以AC為邊向外作等邊ACD

1)畫出將ABD繞點A順時針旋轉(zhuǎn)60°后得到的ACE;

2)若∠ABC60°,AB3BC5,求BD的長.

【答案】1)見解析;(27

【解析】

1)根據(jù)旋轉(zhuǎn)變換的定義和性質(zhì)作圖可得;
2)連接BE,過點EEFBC,交CB延長線于點F,先證△ABE為等邊三角形得AB=AE=BE=3,∠ABE=60°,由∠ABC=60°知∠EBF=60°,據(jù)此知BF=BEcos60°=,EF=BEsin60°=,根據(jù)勾股定理可得EC=7,再證△EAC≌△BADBD=CE=7

解:(1)如圖所示,ACE即為所求.

2)如圖,連接BE,過點EEFBC,交CB延長線于點F,

∵∠BAE=∠CAD60°AEAB,

∴△ABE是等邊三角形,

ABAEBE3,∠ABE60°

∵∠ABC60°,

∴∠EBF60°

BFBEcos60°,EFBEsin60°

EC7,

∵△ACD是等邊三角形,

ACAD,∠CAD60°,

∴∠EAC=∠BAD,

∴△EAC≌△BADSAS),

BDCE7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,飛機在一定高度上沿水平直線飛行,先在點處測得正前方小島的俯角為,面向小島方向繼續(xù)飛行到達(dá)處,發(fā)現(xiàn)小島在其正后方,此時測得小島的俯角為.如果小島高度忽略不計,求飛機飛行的高度(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,,的弦,且,交于點,連接,若,則的度數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一個傾斜角為的斜坡的橫截面,.斜坡頂端B與地面的距離3米.為了對這個斜坡上的綠地進(jìn)行噴灌,在斜坡底端安裝了一個噴頭A,噴頭A噴出的水珠在空中走過的曲線可以看作拋物線的一部分.設(shè)噴出水珠的豎直高度為y(單位:米)(水珠的豎直高度是指水珠與地面的距離),水珠與噴頭A的水平距離為x(單位:米),yx之間近似滿足函數(shù)關(guān)系a,b是常數(shù),),圖2記錄了xy的相關(guān)數(shù)據(jù).

1)求y關(guān)于x的函數(shù)關(guān)系式;

2)斜坡上有一棵高1.8米的樹,它與噴頭A的水平距離為2米,通過計算判斷從A噴出的水珠能否越過這棵樹.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩組卡片共5張,A組的三張分別寫有數(shù)字2,4,6B組的兩張分別寫有3,5.它們除了數(shù)字外沒有任何區(qū)別

1隨機從A組抽取一張,求抽到數(shù)字為2的概率;

2隨機地分別從A組、B組各抽取一張,請你用列表或畫樹狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載.某中學(xué)數(shù)學(xué)活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道上確定點D,使CD與垂直,測得CD的長等于21米,在上點D的同側(cè)取點A、B,使CAD=300CBD=600

(1)求AB的長(精確到0.1米,參考數(shù)據(jù):);

(2)已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果店進(jìn)口一種高檔水果,賣出每斤水果盈利(毛利潤)5元,每天可賣出1000斤,經(jīng)市場調(diào)査后發(fā)現(xiàn),在進(jìn)價不變的情況下,若每斤售價漲0.5元,每天銷量將減少40斤.

1)若以每斤盈利9元的價錢出售,問每天能盈利多少元?

2)若水果店要保證每天銷售這種水果的毛利潤為6000元,同時又要使顧客覺得價不太貴,則每斤水果應(yīng)漲價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC中,E、FAC、AB中點,EF延長線交△ABC外接圓于P,則PBAP的數(shù)值為_____(提示:圓內(nèi)接四邊形對角互補)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在直角坐標(biāo)系中,矩形OABC的頂點O在坐標(biāo)原點,邊OA在x軸上,

OC在y軸上,如果矩形OA′B′C′與矩形OABC關(guān)于點O位似,且矩形OA′B′C′的面積等于矩形OABC面積的,那么點B′的坐標(biāo)是【 】

A.(2,3) B.(2,-3) C.(3,2)或(-2,3) D.(2,3)或(2,3)

查看答案和解析>>

同步練習(xí)冊答案