【題目】在△ABC中,點(diǎn)D、E分別在邊AC、BC上(不與點(diǎn)A、B、C重合),點(diǎn)P是直線AB上的任意一點(diǎn)(不與點(diǎn)A、B重合).設(shè)∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.
(1)如圖,當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng),且n=90°時(shí)
①若PD∥BC,PE∥AC,則m=_____;
②若m=50°,求x+y的值.
(2)當(dāng)點(diǎn)P在直線AB上運(yùn)動(dòng)時(shí),直接寫出x、y、m、n之間的數(shù)量關(guān)系.
【答案】(1)①90°,②140°;(2)詳見解析.
【解析】分析:(1)①證明四邊形DPEC為平行四邊形可得結(jié)論;
②根據(jù)四邊形內(nèi)角和為360°,列等式求出x+y的值;
(2)根據(jù)P、D、E位置的不同,分五種情況:①y-x=m+n,如圖2,點(diǎn)P在BA的延長(zhǎng)線上時(shí),根據(jù)三角形的內(nèi)角和與外角定理列等式,化簡(jiǎn)后得出結(jié)論;
②x-y=m-n,如圖3,點(diǎn)P在BA的延長(zhǎng)線上時(shí),根據(jù)三角形的內(nèi)角和與外角定理列等式,化簡(jiǎn)后得出結(jié)論;
③x+y=m+n,如圖4,點(diǎn)P在線段BA上時(shí),根據(jù)四邊形的內(nèi)角和為360°列等式,化簡(jiǎn)后得出結(jié)論;
④x-y=m+n,如圖5,同理得出結(jié)論;
⑤y-x=m-n,如圖6,同理得出結(jié)論.
詳解:(1)①如圖1,
∵PD∥BC,PE∥AC,
∴四邊形DPEC為平行四邊形,
∴∠DPE=∠C,
∵∠DPE=m,∠C=n=90°,
∴m=90°;
②∵∠ADP=x,∠PEB=y,
∴∠CDP=180°-x,∠CEP=180°-y,
∵∠C+∠CDP+∠DPE+∠CEP=360°,
∠C=90°,∠DPE=50°,
∴90°+180°-x+50°+180°-y=360°,
∴x+y=140°;
(2)分五種情況:
①y﹣x=m+n,如圖2,
理由是:
∵∠DFP=n+∠FEC,∠FEC=180°﹣y,
∴∠DFP=n+180°﹣y,
∵x+m+∠DFP=180°,
∴x+m+n+180°﹣y=180°,
∴y﹣x=m+n;
②x﹣y=m﹣n,如圖3,
理由是:
同理得:m+180°﹣x=n+180°﹣y,
∴x﹣y=m﹣n;
③x+y=m+n,如圖4,
理由是:
由四邊形內(nèi)角和為360°得:180°﹣x+m+180°﹣y+n=360°,
∴x+y=m+n;
④x﹣y=m+n,如圖5,
理由是:
同理得:180°=m+n+y+180°﹣x,
∴x﹣y=m+n;
⑤y﹣x=m﹣n,如圖6,
理由是:
同理得:n+180°﹣x=m+180°﹣y,
∴y﹣x=m﹣n.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形ABCD的兩條對(duì)角線分別為6和8,M、N分別是邊BC、CD的中點(diǎn),P是對(duì)角線BD上一點(diǎn),則PM+PN的最小值= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個(gè)不同的一次函數(shù)y=ax+b與y=bx+a的圖象在同一平面直角坐標(biāo)系內(nèi)的位置可能是( )
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知△ABC中,AB=3,AC=4,BC=5,作∠ABC的角平分線交AC于D,以D為圓心,DA為半徑作圓,與射線交于點(diǎn)E、F.有下列結(jié)論: ①△ABC是直角三角形;②⊙D與直線BC相切;③點(diǎn)E是線段BF的黃金分割點(diǎn);④tan∠CDF=2.
其中正確的結(jié)論有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,動(dòng)點(diǎn)P從B點(diǎn)出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng);另一動(dòng)點(diǎn)Q同時(shí)從B點(diǎn)出發(fā),以1cm/s的速度沿著邊BA向A點(diǎn)運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)D是Rt△ABC的斜邊BC上的一點(diǎn),tanB= ,BC=3BD,CE⊥AD,則 = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤?10分制):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲隊(duì)成績(jī)的中位數(shù)是 分,乙隊(duì)成績(jī)的眾數(shù)是 分;
(2)計(jì)算乙隊(duì)的平均成績(jī)和方差;
(3)已知甲隊(duì)成績(jī)的方差是1.4,則成績(jī)較為整齊的是 隊(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,O為正方形對(duì)角線的交點(diǎn),BE平分∠DBC,交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使CF=CE,連結(jié)DF,交BE的延長(zhǎng)線于點(diǎn)G,連結(jié)OG.
(1)求證:△BCE≌△DCF.
(2)判斷OG與BF有什么關(guān)系,證明你的結(jié)論.
(3)若DF2=8-4,求正方形ABCD的面積?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com