【題目】綜合與實踐

RtABC中,∠ACB90°,點D為斜邊AB上的動點(不與點A,B重合).

1)操作發(fā)現(xiàn):如圖,當ACBC8時,把線段CD繞點C逆時針旋轉(zhuǎn)90°得到線段CE,連接DE,BE

CBE的度數(shù)為   ;

BE   時,四邊形CDBE為正方形;

2)探究證明:如圖,當BC2AC時,把線段CD繞點C逆時針旋轉(zhuǎn)90°后并延長為原來的兩倍,記為線段CE,連接DE,BE

在點D的運動過程中,請判斷∠CBE與∠A的大小關(guān)系,并證明;

CDAB時,求證:四邊形CDBE為矩形.

【答案】1)①45°;②;(2)①∠CBE=∠A,證明詳見解析;②詳見解析

【解析】

(1)①根據(jù)等腰直角三角形的性質(zhì)得到,證明,根據(jù)全等三角形的性質(zhì)證明結(jié)論;

②根據(jù)勾股求出AB,再根據(jù)正方形的性質(zhì)計算即可;

(2)①證明,根據(jù)相似三角形的性質(zhì)證明結(jié)論;

②根據(jù)全等三角形的性質(zhì)、矩形的判定定理證明.

解:(1)①∵

,

,

∴∠ACB=DCE,

,

中,

,

(SAS),

;

故答案為:45°

,

,

當四邊形CDBE是正方形時,CD⊥AB,BE=BD=AD,

;

故答案為:

2)①∠CBE=∠A

理由如下:

BC2AC,CE2CD

,

∵∠ACB=∠DCE90°,

∴∠ACD+DCB=∠DCB+BCE

∴∠ACD=∠BCE,

∴△ACD∽△BCE

∴∠CBE=∠A;

②證明:∵∠CBE=∠A,∠DBC+A90°

∴∠DBE=∠DBC+CBE=∠DBC+A90°,

AB

∴∠CDB90°,

又∵∠DCE90°

∴四邊形CDBE是矩形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】電子跳蚤游戲盤是如圖所示的,.如果跳蚤開始時在邊的處,.跳蚤第一步從跳到邊的(第1次落點)處,且;第二步從跳到邊的(第2次落點)處,且;第三步從跳到邊的(第3次落點)處,且;……;跳蚤按上述規(guī)則一直跳下去,第次落點為為正整數(shù)),則點之間的距離為(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在學了尺規(guī)作圖后,通過三弧法作了一個ACD,其作法步驟是:①作線段AB,分別以AB為圓心,AB長為半徑畫弧,兩弧的交點為C;②以B為圓心,AB長為半徑畫弧交AB的延長線于點D;③連結(jié)AC,BC,CD.下列說法不正確的是( 。

A.A60°B.ACD是直角三角形

C.BCCDD.BACD的外心

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人準備整理一批新到的實驗器材,若甲單獨整理需要40分鐘完工,若甲、乙共同整理20分鐘后,乙需再單獨整理20分鐘才能完工.

⑴問乙單獨整理多少分鐘完工?

⑵若乙因工作需要,他的整理時間不超過30分鐘,則甲至少整理多少分鐘才能完工?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A1)在射線OM上,點B,2)在射線ON上,以AB為直角邊作RtABA1,以BA1為直角邊作第二個RtBA1B1,然后以A1B1為直角邊作第三個RtA1B1A2,…,依次規(guī)律,得到RtB2019A2020B2020,則點B2020的縱坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為改善辦學條件,計劃購進A,B兩種規(guī)格的書架,經(jīng)市場調(diào)查發(fā)現(xiàn)有線下和線上兩種購買方式,具體情況如下表:

1)如果在線下購買A,B兩種書架20個,共花費5520元,求AB兩種書架各購買了多少個.

2)如果在線上購買A,B兩種書架20個,共花費W元,設(shè)其中A種書架購買m個,求W關(guān)于m的函數(shù)關(guān)系式.

3)在(2)的條件下,若購買B種書架的數(shù)量不少于A種書架數(shù)量的2倍,請求出花費最少的購買方案,并計算按照這種購買方案,線上比線下節(jié)約多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市教育行政部門為了了解初一學生每學期參加綜合實踐活動的情況,隨機抽樣調(diào)查了某校初一學生一個學期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖(如圖)

請你根據(jù)圖中提供的信息,回答下列問題:

(1)求出扇形統(tǒng)計圖中a的值,并求出該校初一學生總數(shù);

(2)分別求出活動時間為5天、7天的學生人數(shù),并補全頻數(shù)分布直方圖;

(3)求出扇形統(tǒng)計圖中活動時間為4的扇形所對圓心角的度數(shù);

(4)在這次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?

(5)如果該市共有初一學生6000人,請你估計活動時間不少于4的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB2,AD,ECD邊上的中點,PBC邊上的一點,且BP2CP,連接EP并延長交AB的延長線于點F

1)求BF;

2)判斷EB是否平分∠AEC,并說明理由;

3)連接AP,不添加輔助線,試證明△AEP≌△FBP,直接寫出一種經(jīng)過兩次變換的方法使得△AEP與△FBP重合.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了做好開學準備,某校共購買了20A、B兩種桶裝消毒液,進行校園消殺,以備開學.已知A種消毒液300/桶,每桶可供2 0002的面積進行消殺,B種消毒液200/桶,每桶可供1 0002的面積進行消殺.

1)設(shè)購買了A種消毒液x桶,購買消毒液的費用為y元,寫出yx之間的關(guān)系式,并指出自變量x的取值范圍;

2)在現(xiàn)有資金不超過5 300元的情況下,求可消殺的最大面積.

查看答案和解析>>

同步練習冊答案