【題目】如圖,拋物線yax2+bx+4x軸于A(﹣30),B4,0)兩點(diǎn),與y軸交于點(diǎn)C,連接AC,BC.點(diǎn)P是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)為m

1)求此拋物線的表達(dá)式;

2)過點(diǎn)PPMx軸,垂足為點(diǎn)M,PMBC于點(diǎn)Q.試探究點(diǎn)P在運(yùn)動(dòng)過程中,是否存在這樣的點(diǎn)Q,使得以A,C,Q為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)求出此時(shí)點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由;

3)過點(diǎn)PPNBC,垂足為點(diǎn)N.請(qǐng)用含m的代數(shù)式表示線段PN的長(zhǎng),并求出當(dāng)m為何值時(shí)PN有最大值,最大值是多少?

【答案】12)存在,點(diǎn)Q的坐標(biāo)為:Q13)或();(3PN=﹣m22+,當(dāng)m2時(shí),PN的最大值為

【解析】

1)由二次函數(shù)交點(diǎn)式表達(dá)式,即可求解;

2)分AC=AQAC=CQ、CQ=AQ三種情況,利用方程或方程組求解即可得到答案;

3)利用等腰直角三角形的性質(zhì)得到:PN=PQsinPQN=即可求解.

解:(1 拋物線yax2+bx+4x軸于A(﹣3,0),B4,0)兩點(diǎn),

設(shè)

即:﹣12a4,解得:

則拋物線的表達(dá)式為

2)存在,理由:

點(diǎn)A、B、C的坐標(biāo)分別為(﹣3,0)、(4,0)、(0,4),

AC5,AB7,BC,∠OBC=∠OCB45°

將點(diǎn)B、C的坐標(biāo)代入一次函數(shù)表達(dá)式:ykx+b并解得:y=﹣x+4…①,

同理可得直線AC的表達(dá)式為:,

①當(dāng)ACAQ時(shí),如圖1,

ACAQ5,

設(shè):QMMBn,則AM7n,

由勾股定理得:

解得:n34(舍去4),

故點(diǎn)Q1,3);

②當(dāng)ACCQ時(shí),如圖1,

CQ5,則BQBCCQ

QMMB,

故點(diǎn)Q);

③當(dāng)CQAQ時(shí),則的垂直平分線上,

設(shè)直線AC的中點(diǎn)為K,2),

過點(diǎn) CA垂直直線的表達(dá)式中的k值為,

直線的表達(dá)式為: ②,

聯(lián)立①②并解得:(舍去);

故點(diǎn)Q的坐標(biāo)為:Q1,3)或(,);

3)設(shè)點(diǎn),則點(diǎn)Qm,﹣m+4),

OBOC,∴∠ABC=∠OCB45°=∠PQN,

PNPQsinPQN

PN有最大值,

當(dāng)m2時(shí),PN的最大值為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電工想換房間的燈泡,已知燈泡到地面的距離為,現(xiàn)有一架家用可調(diào)節(jié)式腳踏人字梯,其中踏板、地面都是水平的.梯子的側(cè)面簡(jiǎn)化結(jié)構(gòu)如圖所示,左右支撐架長(zhǎng)度相等,.設(shè)梯子一邊與地面的夾角為,且可調(diào)節(jié)的范圍為.當(dāng)時(shí),電工站在梯子安全擋中最高一檔踏板上的最大觸及高度為

1)當(dāng)時(shí),求踏板離地面的高度.(精確到

2)調(diào)節(jié)角度,試判斷電工是否可以換下燈泡,并說明理由.(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠DAB=60°AB=5,BC=3,點(diǎn)P從點(diǎn)D出發(fā),沿DC,CB向終點(diǎn)B勻速運(yùn)動(dòng).設(shè)點(diǎn)P所走過的路程為x,點(diǎn)P所經(jīng)過的線段與AD,AP所圍成的圖形的面積為y,yx的變化而變化.在下列圖象中,能正確反映yx的函數(shù)關(guān)系的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1x+4的圖象與反比例函數(shù)y2的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C

1)求k

2)根據(jù)圖象直接寫出y1y2時(shí),x的取值范圍.

3)若反比例函數(shù)y2與一次函數(shù)y1x+4的圖象總有交點(diǎn),求k的取值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是我國(guó)古代城市用以滯洪或分洪系統(tǒng)的局部截面原理圖,圖中OP為下水管道口直徑,OB為可繞轉(zhuǎn)軸O自由轉(zhuǎn)動(dòng)的閥門.平時(shí)閥門被管道中排出的水沖開,可排出城市污水;當(dāng)河水上漲時(shí),閥門會(huì)因河水壓迫而關(guān)閉,以防河水倒灌入城中.若閥門的直徑OBOP100cmOA為檢修時(shí)閥門開啟的位置,且OAOB

1)直接寫出閥門被下水道的水沖開與被河水關(guān)閉過程中∠POB的取值范圍;

2)為了觀測(cè)水位,當(dāng)下水道的水沖開閥門到達(dá)OB位置時(shí),在點(diǎn)A處測(cè)得俯角∠CAB67.5°,若此時(shí)點(diǎn)B恰好與下水道的水平面齊平,求此時(shí)下水道內(nèi)水的深度.(結(jié)果保留小數(shù)點(diǎn)后一位)

1.41sin67.5°=0.92,cos67.5°0.38tan67.5°=2.41,sin22.5°=0.38cos22.5°=0.92,tan22.5°=0.41

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為了到高校招聘大學(xué)生,為此設(shè)置了三項(xiàng)測(cè)試:筆試、面試、實(shí)習(xí).學(xué)生的最終成績(jī)由筆試面試、實(shí)習(xí)依次按325的比例確定.公司初選了若干名大學(xué)生參加筆試,面試,并對(duì)他們的兩項(xiàng)成績(jī)分別進(jìn)行了整理和分析.下面給出了部分信息:

①公司將筆試成績(jī)(百分制)分成了四組,分別為A組:60≤x70,B組:70≤x80C組:80≤x90,D組:90≤x100;并繪制了如下的筆試成績(jī)頻數(shù)分布直方圖.其中,C組的分?jǐn)?shù)由低到高依次為:80,8182,83,83,84,84,85,86,88,88,88,89

②這些大學(xué)生的筆試、面試成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)、最高分如下表:

平均數(shù)

中位數(shù)

眾數(shù)

最高分

筆試成績(jī)

81

m

92

97

面試成績(jī)

80.5

84

86

92

根據(jù)以上信息,回答下列問題:

1)這批大學(xué)生中筆試成績(jī)不低于88分的人數(shù)所占百分比為   

2m   分,若甲同學(xué)參加了本次招聘,他的筆試、面試成績(jī)都是83分,那么該同學(xué)成績(jī)排名靠前的是   成績(jī),理由是   

3)乙同學(xué)也參加了本次招聘,筆試成績(jī)雖不是最高分,但也不錯(cuò),分?jǐn)?shù)在D組;面試成績(jī)?yōu)?/span>88分,實(shí)習(xí)成績(jī)?yōu)?/span>80分由表格中的統(tǒng)計(jì)數(shù)據(jù)可知乙同學(xué)的筆試成績(jī)?yōu)?/span>   分;若該公司最終錄用的最低分?jǐn)?shù)線為86分,請(qǐng)通過計(jì)算說明,該同學(xué)最終能否被錄用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB兩組卡片共5張,A組的三張分別寫有數(shù)字2,4,6B組的兩張分別寫有3,5.它們除了數(shù)字外沒有任何區(qū)別

1隨機(jī)從A組抽取一張,求抽到數(shù)字為2的概率;

2隨機(jī)地分別從A組、B組各抽取一張,請(qǐng)你用列表或畫樹狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個(gè)游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請(qǐng)問這樣的游戲規(guī)則對(duì)甲乙雙方公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組為了解我市氣溫變化情況,記錄了今年月份連續(xù)天的最低氣溫(單位:):.關(guān)于這組數(shù)據(jù),下列結(jié)論不正確的是(

A.平均數(shù)是 B.中位數(shù)是 C.眾數(shù)是 D.方差是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】央視經(jīng)典詠流傳開播以來受到社會(huì)廣泛關(guān)注.我市某校就中華文化我傳承——地方戲曲進(jìn)校園的喜愛情況進(jìn)行了隨機(jī)調(diào)查,對(duì)收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩副尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問題:

圖中A表示很喜歡”,B表示喜歡”,C表示一般”,D表示不喜歡”.

(1)被調(diào)查的總?cè)藬?shù)是_____________人,扇形統(tǒng)計(jì)圖中C部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為_______.

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共有學(xué)生1800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中A類有__________人;

(4)在抽取的A5人中,剛好有3個(gè)女生2個(gè)男生,從中隨機(jī)抽取兩個(gè)同學(xué)擔(dān)任兩角色,用樹形圖或列表法求出被抽到的兩個(gè)學(xué)生性別相同的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案