已知,如圖,CD∥GF,∠B=∠ADE,試說明∠1=∠2.
考點(diǎn):平行線的判定與性質(zhì)
專題:證明題
分析:根據(jù)同位角相等,兩直線平行判斷出DE∥BC,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠1=∠3,兩直線平行,內(nèi)錯(cuò)角相等可得∠2=∠3,然后求解即可.
解答:證明:∵∠B=∠ADE,
∴DE∥BC,
∴∠1=∠3,
∵CD∥GF,
∴∠2=∠3,
∴∠1=∠2.
點(diǎn)評(píng):本題考查了平行線判定與性質(zhì),熟記性質(zhì)和判定方法并準(zhǔn)確識(shí)圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在△ABC中,AC=15,BC=18,sinC=
4
5
,D為邊AC上的動(dòng)點(diǎn)(不與A、C重合),過D作DE∥BC,交邊AB于點(diǎn)E,過D作DF⊥BC,垂足為F,聯(lián)結(jié)BD,設(shè)CD=x.
(1)如果梯形EBFD的面積為S,求S關(guān)于x的函數(shù)解析式,并寫出這個(gè)函數(shù)的定義域;
(2)如果△BDF的面積為S1,△BDE的面積為S2,那么當(dāng)x為何值時(shí),S1=2S2
(3)如果以D為圓心,DC為半徑的⊙D與以E為圓心,AE為半徑的⊙E相切,求線段DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點(diǎn)O,∠AOD=100°,求∠OAB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:a+
1
a
=1+
10
,求a2+
1
a2
的值.
(2)已知1<x<2,x+
1
x-1
=7,求
x-1
-
1
x-1
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中有Rt△ABC,已知∠A=90°,AB=AC,A(-2,0)、B(0,1)、C(d,2).
(1)求d的值;
(2)將△ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點(diǎn)的對應(yīng)點(diǎn)B′、C′正好落在某反比例函數(shù)y1的圖象上.請求出這個(gè)反比例函數(shù)y1和此時(shí)的直線B′C′的解析式y(tǒng)2;
(3)當(dāng)x滿足什么條件時(shí),y1>y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某車間有工人56名,生產(chǎn)一種桌面和桌腿,每人每天平均能生產(chǎn)桌面24個(gè)或桌腿32條,應(yīng)分配多少人生產(chǎn)桌面,多少人生產(chǎn)桌腿,才能使一個(gè)桌面配4條桌腿剛好配套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一個(gè)三角形的最大角度數(shù)為x+30°,最小角的度數(shù)為2x-30°,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用加減消元法解這個(gè)方程組:
x+2y=
y-x
4
2x+y=-
9
23

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求值:
(1)(m-3n)2-(m+3n)2+2,其中m=2,n=-3;
(2)已知x+
1
x
=5,求x4+
1
x4
的值.

查看答案和解析>>

同步練習(xí)冊答案