分析 (1)先依據(jù)等腰直角三角形的性質(zhì)求得∠ECA、∠FCB的度數(shù),然后依據(jù)∠ECA+∠ECF+∠FCB=180°求解即可;
(2)延長ED到點(diǎn)G,使得DG=DE,連接BG,F(xiàn)G,然后依據(jù)SAS證明△EDA≌△GDB,接下來依據(jù)SAS證明△ECF≌△GBF,最后再證明△EFD≌△GFD,從而可證明△DEF為等腰直角三角形.
解答 解:(1)∵△ACE和△CBF均為等腰直角三角形,
∴∠ECA=45°,∠FCB=45°.
∵∠ECA+∠ECF+∠FCB=180°,
∴∠ECF=90°.
(2)證明:延長ED到點(diǎn)G,使得DG=DE,連接BG,F(xiàn)G.
∵D為線段AB的中點(diǎn),
∴AD=BD.
∵在△EDA和△GDB中$\left\{\begin{array}{l}{ED=GD}\\{∠EDA=∠GDB}\\{DA=DB}\end{array}\right.$,
∴△EDA≌△GDB(SAS).
∴EA=GB,∠A=∠GBD=45°.
∵△ACE與△BCF是等腰直角三角形
∴CF=FB,AE=EC,∠A=∠ECA=∠FCB=∠FBC=45°.
∴CF=FB,EC=BG,∠ECF=90°.
∵在△ECF和△GBF中$\left\{\begin{array}{l}{EC=BG}\\{∠ECF=∠GBF}\\{CF=BF}\end{array}\right.$,
∴△ECF≌△GBF(SAS).
∴EF=GF,∠EFC=∠GFB.
∵∠CFB=∠CFG+∠GFB=90°,
∴∠EFG=∠EFC+∠CFG=90°.
∵在△EFD和△GFD中$\left\{\begin{array}{l}{EF=GF}\\{FD=FD}\\{ED=GD}\end{array}\right.$,
∴△EFD≌△GFD.
∴∠EDF=∠GDF=90°,∠EFD=∠GFD=45°.
∴ED=DF
∴△DEF為等腰直角三角形.
點(diǎn)評 本題主要考查的是全等三角形的性質(zhì)和判定,解答本題需要同學(xué)們熟練掌握全等三角形的性質(zhì)和判定,通過倍長中線構(gòu)造全等三角形是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com