【題目】小明在學(xué)習(xí)了數(shù)據(jù)的收集、整理與描述后,為媽媽整理記錄了10月份的家庭支出情況,并繪制成如下尚不完整的統(tǒng)計(jì)圖表,請(qǐng)你根據(jù)圖表信息完成下列各題:
項(xiàng)目 | 物業(yè)費(fèi) | 伙食費(fèi) | 服裝費(fèi) | 其他費(fèi) |
金額/元 | 800 | 400 |
(1)10月份小明家共支出多少元?
(2)在扇形統(tǒng)計(jì)圖中,表示“其他費(fèi)”的扇形圓心角為多少度?
(3)請(qǐng)將表格補(bǔ)充完整;
項(xiàng)目 | 物業(yè)費(fèi) | 伙食費(fèi) | 服裝費(fèi) | 其他費(fèi) |
金額/元 | 800 | ________ | ________ | 400 |
(4)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
【答案】(1)5000;(2)28.8°;(3)1800;2000;(4)詳見解析.
【解析】
(1)根據(jù)題意列式計(jì)算即可;
(2)“其他費(fèi)”的扇形圓心角為用360°去乘以“其他費(fèi)”所占的百分比即可得到結(jié)論;
(3)小明家共支出的費(fèi)用乘以伙食費(fèi)、服裝費(fèi)所占的百分?jǐn)?shù)即可得到結(jié)論;
(4)根據(jù)題意補(bǔ)充條形統(tǒng)計(jì)圖即可.
(1)10月份小明家共支出800÷16%=5000(元);
(2)“其他費(fèi)”的扇形圓心角為360°×(1-40%-36%-16%)=28.8°;
(3)伙食費(fèi)=5000×36%=1800元;服裝費(fèi)=5000×40%=2000元;
故答案為:1800,2000;
(4)補(bǔ)充條形統(tǒng)計(jì)圖如圖所示:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王紅有5張寫著以下數(shù)字的卡片,請(qǐng)按要求抽出卡片,完成下列各題:
(1)從中取出2張卡片,使這2張卡片上數(shù)字乘積最小,最小值是 .
(2)從中取出2張卡片,使這2張卡片數(shù)字相除商最大,最大值是 .
(3)從中取出除0以外的4張卡片,將這4個(gè)數(shù)字進(jìn)行加、減、乘、除或乘方等混合運(yùn)算,使結(jié)果為24,(注:每個(gè)數(shù)字只能用一次,如:23×[1﹣(﹣2)]),請(qǐng)另寫出一種符合要求的運(yùn)算式子 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y= x2+1(如圖所示).
(1)填空:拋物線的頂點(diǎn)坐標(biāo)是( , ),對(duì)稱軸是;
(2)已知y軸上一點(diǎn)A(0,2),點(diǎn)P在拋物線上,過點(diǎn)P作PB⊥x軸,垂足為B.若△PAB是等邊三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,點(diǎn)M在直線AP上.在平面內(nèi)是否存在點(diǎn)N,使四邊形OAMN為菱形?若存在,直接寫出所有滿足條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,BC為⊙O切線,連接A、C兩點(diǎn),交⊙O于點(diǎn)D,BE=CE,連接DE,OE.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)求證:BC2=CD2OE;
(3)若cos∠BAD= ,BE=6,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E,F分別在邊AB,BC上,且AE= AB,將矩形沿直線EF折疊,點(diǎn)B恰好落在AD邊上的點(diǎn)P處,連接BP交EF于點(diǎn)Q,對(duì)于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把矩形紙片ABCD沿EF折疊,使點(diǎn)B落在邊AD上的點(diǎn)B′處,點(diǎn)A落在點(diǎn)A′處,已知AD=10,CD=4,B′D=2.
(1)求證:B′E=BF;
(2)求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E. F. G、H分別是邊AB、BC、CD、DA的中點(diǎn).
(1)判斷四邊形EFGH的形狀,并說明你的理由;
(2)連接BD和AC,當(dāng)BD、AC滿足何條件時(shí),四邊形EFGH是正方形?證明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小米是一個(gè)愛動(dòng)腦筋的孩子,他用如下方法作∠AOB的角平分線: 作法:如圖,
⑴在射線OA上任取一點(diǎn)C,過點(diǎn)C作CD∥OB;
⑵以點(diǎn)C為圓心,CO的長為半徑作弧,交CD于點(diǎn)E;
⑶作射線OE.
所以射線OE就是∠AOB的角平分線.請(qǐng)回答:小米的作圖依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,BC=6cm.射線 AG∥BC,點(diǎn) E 從點(diǎn) A 出發(fā)沿射線 AG 以 2cm/s 的速度運(yùn)動(dòng),當(dāng)點(diǎn) E 先出發(fā) 1s 后,點(diǎn) F 也從點(diǎn) B 出發(fā)沿射線 BC 以 cm/s 的速度運(yùn)動(dòng),分別連結(jié) AF,CE.設(shè)點(diǎn) F 運(yùn)動(dòng)時(shí)間為 t(s),其中 t>0.
(1)當(dāng) t 為何值時(shí),∠BAF<∠BAC;
(2)當(dāng) t 為何值時(shí),AE=CF;
(3)當(dāng) t 為何值時(shí),S△ABF+S△ACE<S△ABC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com