11.如圖,在△ABC中,∠C=90°,D在AB邊上,以BD為直徑的半圓與AC相切于點(diǎn)E,連接BE.
(1)試說明:BE平分∠ABC;
(2)若∠A=30°,⊙O的半徑為6,求圖中陰影部分的面積.

分析 (1)連接OE,根據(jù)切線的性質(zhì)得出OE⊥AC,即可證得OE∥BC,得出∠EBC=∠OEB,因?yàn)椤螼EB=∠OBE,證得∠OBE=∠EBC,得出結(jié)論;
(2)分別求得三角形AOE和扇形的面積,根據(jù)S陰影=S△AOE-S扇形ODE即可求得.

解答 (1)證明:連接OE,
∵半圓與AC相切于點(diǎn)E,
∴OE⊥AC,
∵∠C=90°,
∴OE∥BC,
∴∠EBC=∠OEB,
∵OE=OB,
∴∠OEB=∠OBE,
∴∠OBE=∠EBC,
∴BE平分∠ABC;
(2)∵OE⊥AC,∠A=30°,⊙O的半徑為6,
∴OE=6,∠AOE=60°,
∴OA=2OE=12,
∴AE=$\sqrt{O{A}^{2}-O{E}^{2}}$=6$\sqrt{3}$,
∴S陰影=S△AOE-S扇形ODE=$\frac{1}{2}$×6$\sqrt{3}$×6-$\frac{60π×{6}^{2}}{360}$=18$\sqrt{3}$-6π.

點(diǎn)評(píng) 本題考查了切線的性質(zhì),等腰三角形的性質(zhì),平行線的判定依據(jù)扇形的面積等,作出輔助線構(gòu)建直角三角形是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.計(jì)算:
(1)a-2b2•(ab-1);    
(2)($\frac{x}{y}$)2•(xy)-2÷(x-1y).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.合并同類項(xiàng):$\frac{3}{4}mn-\frac{2}{3}mn+\frac{1}{2}$nm+5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.如圖,兩摞規(guī)格完全相同的課本整齊疊放在講臺(tái)上.請(qǐng)根據(jù)圖中所給出的數(shù)據(jù)信息,回答下列問題:
(1)每本課本的厚度為0.5cm;
(2)若有一摞上述規(guī)格的課本x本,整齊疊放在講臺(tái)上,請(qǐng)用含x的代數(shù)式表示出這一摞數(shù)學(xué)課本的頂部距離地面的高度;
(3)當(dāng)x=56時(shí),若從中取走14本,求余下的課本的頂部距離地面的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.解方程:
(1)4-3x=6-5x;
(2)x-$\frac{2x+5}{6}$=1-$\frac{2x-3}{2}$;
(3)-3(2y+2)-2(y-2)=6;
(4)$\frac{x+1}{2}$-1=$\frac{2-x}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.一批單價(jià)為20元的商品,若每件按24元的價(jià)格銷售時(shí),每天能賣出36件;若每件按29元的價(jià)格銷售時(shí),每天能賣出21件.假定每天銷售件數(shù)y(件)與銷售價(jià)格x(元/件)滿足一個(gè)以x為自變量的一次函數(shù).
(1)求y與x滿足的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)在不積壓且不考慮其他因素的情況下,銷售價(jià)格定為多少元時(shí),才能使每天獲得的利潤P最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A、B兩點(diǎn),與反比例函數(shù)y=$\frac{m}{x}$的圖象交于C、D兩點(diǎn),DE⊥x軸于點(diǎn)E,已知C點(diǎn)的坐標(biāo)是(-6,-1),DE=3.
(1)求反比例函數(shù)與一次函數(shù)的解析式.
(2)根據(jù)圖象直接回答:當(dāng)x為何值時(shí),一次函數(shù)的值小于反比例函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.已知x=1是方程2x2-3x-m=0的一個(gè)根,則m的值為(  )
A.1B.5C.-1D.-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示,在△ABC中,BD、CD分別是∠ABC、∠ACB的平分線,DE∥AB,DF∥AC,若△DEF的周長為100cm,則BC的長為100cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案