分析 (1)連接OE,根據(jù)切線的性質(zhì)得出OE⊥AC,即可證得OE∥BC,得出∠EBC=∠OEB,因?yàn)椤螼EB=∠OBE,證得∠OBE=∠EBC,得出結(jié)論;
(2)分別求得三角形AOE和扇形的面積,根據(jù)S陰影=S△AOE-S扇形ODE即可求得.
解答 (1)證明:連接OE,
∵半圓與AC相切于點(diǎn)E,
∴OE⊥AC,
∵∠C=90°,
∴OE∥BC,
∴∠EBC=∠OEB,
∵OE=OB,
∴∠OEB=∠OBE,
∴∠OBE=∠EBC,
∴BE平分∠ABC;
(2)∵OE⊥AC,∠A=30°,⊙O的半徑為6,
∴OE=6,∠AOE=60°,
∴OA=2OE=12,
∴AE=$\sqrt{O{A}^{2}-O{E}^{2}}$=6$\sqrt{3}$,
∴S陰影=S△AOE-S扇形ODE=$\frac{1}{2}$×6$\sqrt{3}$×6-$\frac{60π×{6}^{2}}{360}$=18$\sqrt{3}$-6π.
點(diǎn)評(píng) 本題考查了切線的性質(zhì),等腰三角形的性質(zhì),平行線的判定依據(jù)扇形的面積等,作出輔助線構(gòu)建直角三角形是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com