【題目】如圖,二次函數(shù).圖象的頂點(diǎn)為,其圖象與軸的交點(diǎn)的橫坐標(biāo)分別為、,與軸負(fù)半軸交于點(diǎn).下面五個(gè)結(jié)論:;②;③當(dāng)時(shí),值的增大而增大;當(dāng)時(shí),;⑤只有當(dāng)時(shí),是等腰直角三角形.那么,其中正確的結(jié)論______.(只填你認(rèn)為正確結(jié)論的序號)

【答案】①⑤

【解析】

根據(jù)拋物線的對稱性可得到拋物線的對稱軸為直線x=1,根據(jù)拋物線的對稱軸為直線x=﹣=1可判斷①正確;根據(jù)圖象得x=1對應(yīng)的函數(shù)值為負(fù)數(shù)可判斷以②錯(cuò)誤;

根據(jù)拋物線當(dāng)a0,在對稱軸左側(cè)yx的增大而減小可判斷以③錯(cuò)誤;利用x=﹣1x=3時(shí),ax2+bx+c=0,可判斷④錯(cuò)誤設(shè)拋物線的解析式為y=ax+1)(x3)=ax22ax3a,對稱軸x=1x軸與E點(diǎn),當(dāng)△ABD是等腰直角三角形得到DE=AB,解方程求出a的值即可判斷⑤正確

∵二次函數(shù)的圖象與x軸的交點(diǎn)A、B的橫坐標(biāo)分別為﹣13,AB中點(diǎn)坐標(biāo)為(10),而點(diǎn)A與點(diǎn)B是拋物線上的對稱點(diǎn),∴拋物線的對稱軸為直線x=1x=﹣=1,2a+b=0,所以①正確

∵當(dāng)x=1時(shí),對應(yīng)的函數(shù)圖象在x軸下方a+b+c0,所以②錯(cuò)誤;

a0,∴當(dāng)x1時(shí)yx值的增大而減,所以③錯(cuò)誤;

由于當(dāng)﹣1x3時(shí),ax2+bx+c0,x=﹣1x=3時(shí)ax2+bx+c=0,所以④錯(cuò)誤

設(shè)拋物線的解析式為y=ax+1)(x3)=ax22ax3a,對稱軸x=1x軸與E點(diǎn)如圖,當(dāng)△ABD是等腰直角三角形,DE=AB,即||=×4,a=,所以⑤正確

故答案為:①⑤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明的爸爸在池邊開了一塊四邊形土地種蔬菜,爸爸讓小明計(jì)算一下土地的面積,以便計(jì)算產(chǎn)量.小明找了米尺和測角儀,測得AB=3米,BC=4米,CD=12米,DA=13米,∠B=90°.

⑴若連接AC,試證明:△ACD是直角三角形;

⑵請你幫小明計(jì)算這塊土地的面積為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,且點(diǎn)B與點(diǎn)C的坐標(biāo)分別為B(3,0).C(0,3),點(diǎn)M是拋物線的頂點(diǎn).

(1)求二次函數(shù)的關(guān)系式;

(2)點(diǎn)P為線段MB上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PDx軸于點(diǎn)D.若OD=m,PCD的面積為S,試判斷S有最大值或最小值?并說明理由;

(3)在MB上是否存在點(diǎn)P,使PCD為直角三角形?如果存在,請求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD=10,CD=15,E是邊CD上一點(diǎn),且DE=5,P是射線AD上一動(dòng)點(diǎn),過A,P,E三點(diǎn)的⊙O交直線AB于點(diǎn)F,連結(jié)PE,EF,PF,設(shè)AP=m.

(1)當(dāng)m=6時(shí),求AF的長.

(2)在點(diǎn)P的整個(gè)運(yùn)動(dòng)過程中.

tanPFE的值是否改變?若不變,求出它的值;若改變,求出它的變化范圍.

②當(dāng)矩形ABCD恰好有2個(gè)頂點(diǎn)落在⊙O上時(shí),求m的值.

(3)若點(diǎn)A,H關(guān)于點(diǎn)O成中心對稱,連結(jié)EH,CH.當(dāng)CEH是等腰三角形時(shí),求出所有符合條件的m的值.(直接寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 (1)閱讀理解:

我們知道,只用直尺和圓規(guī)不能解決的三個(gè)經(jīng)典的希臘問題之一是三等分任意角,但是這個(gè)任務(wù)可以借助如圖所示的一邊上有刻度的勾尺完成,勾尺的直角頂點(diǎn)為P,寬臂的寬度=PQ= QR = RS,(這個(gè)條件很重要哦!) 尺的一邊 MN 滿足M, N, Q三點(diǎn)共線(所以PQ ⊥ MN).

下面以三等分∠ABC為例說明利用勾尺三等分銳角的過程:

第一步:畫直線DE使DE //BC,且這兩條平行線的距離等于PQ;

第二步:移動(dòng)勾尺到合適位置,使其頂點(diǎn)P落在DE上,使勾尺的MN邊經(jīng)過點(diǎn)B,同時(shí)讓點(diǎn)R落在∠ABCBA邊上;

第三步:標(biāo)記此時(shí)點(diǎn)Q和點(diǎn)P所在位置,作射線BQ和射線BP:

請完成第三步操作,圖中∠ABC的三等分線是射線 .

2)在(1)的條件下補(bǔ)全三等分∠ABC的主要證明過程:

,BQ ⊥ PR

∴BP= BR.(線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等)

∴∠RBQ=∠PBQ,

∵PT⊥BC,PQ⊥BQ,PT=PQ,

∴∠ = ∠ . (角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的平分線上)

∴∠ = = ∠ = ∠

3)在(1)的條件下探究:

∠ABS=∠ABC是否成立?如果成立,請說明理由;如果不成立,請?jiān)谙聢D中∠ABC外部畫出∠ABV =∠ABC(無需寫畫法,保留畫圖痕跡即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),經(jīng)過點(diǎn)的直線軸交于點(diǎn),與拋物線的另一個(gè)交點(diǎn)為,且

直接寫出點(diǎn)的坐標(biāo),并求直線的函數(shù)表達(dá)式(其中用含的式子表示);

點(diǎn)是直線上方的拋物線上的一點(diǎn),若的面積的最大值為,求的值;

設(shè)是拋物線對稱軸上的一點(diǎn),點(diǎn)在拋物線上,以點(diǎn),,,為頂點(diǎn)的四邊形能否成為矩形?若能,求出點(diǎn)的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在日常生活中,如取款、上網(wǎng)等都需要密碼,有一種利用因式分解產(chǎn)生的密碼,方便記憶,原理是:如多項(xiàng)式,若時(shí),則各因式的值為,,,于是把018162作為一個(gè)六位數(shù)的密碼,對于多項(xiàng)式,取,時(shí),用上述方法產(chǎn)生的密碼是_________________.(寫一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖,已知正方形ABCD,點(diǎn)E是BC邊的中點(diǎn),DE與AC相交于點(diǎn)F,連接BF,下列結(jié)論:①SABF=SADF;②SCDF=2SCEF;③SADF=2SCEF;④SADF=2SCDF,其中正確的是( 。

A. ①②③ B. ②③ C. ①④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A-24), B-3-2),C1,2).

1)畫出△ABC關(guān)于x軸對稱的△A1B1C1,寫出點(diǎn)A1B1、C1的坐標(biāo).

2)在y軸上找一個(gè)點(diǎn)P,使△ABP的周長最小.

查看答案和解析>>

同步練習(xí)冊答案