【題目】如圖,已知 ,在射線 上取點 ,以 為圓心的圓與 相切;在射線 上取點 ,以 為圓心, 為半徑的圓與 相切;在射線 上取點 ,以 為圓心, 為半徑的圓與 相切; ;在射線 上取點 ,以 為圓心, 為半徑的圓與 相切.若 的半徑為 ,則 的半徑長是 .
【答案】512
【解析】解:如圖,連接O1A1,O2A2,O3A3,
∵⊙O1,⊙O2,⊙O3,……都與OB相切,
∴ O1A1⊥OB,
又∵∠AOB=30°,O1A1=r1=1=20.
∴OO1=2,
在Rt△OO2A2中,
∴OO1+O1O2=O2A2.
∴2+O2A2=2O2A2.
∴O2A2=r2=2=21.
∴OO2=4=22,
……
依此類推可得OnAn=rn=2=2n-1.
∴O10A10=r10=2=210-1=29=512.
所以答案是512.
【考點精析】根據(jù)題目的已知條件,利用數(shù)與式的規(guī)律和含30度角的直角三角形的相關知識可以得到問題的答案,需要掌握先從圖形上尋找規(guī)律,然后驗證規(guī)律,應用規(guī)律,即數(shù)形結合尋找規(guī)律;在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=m(x+1)(x﹣2)(m為常數(shù),且m>0)與x軸從左至右依次交于A、B兩點,與y軸交于點C,且OA=OC,經過點B的直線與拋物線的另一交點D在第二象限.
(1)求拋物線的函數(shù)表達式.
(2)若∠DBA=30°,設F為線段BD上一點(不含端點),連接AF,一動點M從點A出發(fā),沿線段AF以每秒1個單位的速度運動到F,再沿線段FD以每秒2個單位的速度運動到D后停止,當點F的坐標是多少時,點M在整個運動過程中用時最少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知∠1=115°,∠2=50°,∠3=65°,又∠NEG=∠GEB,試判斷AB∥CD,EG∥FH是否成立,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(探索新知)
如圖1,點C在線段AB上,圖中共有3條線段:AB、AC和BC,若其中有一條線段的長度是另一條線段長度的兩倍,則稱點C是線段AB的“二倍點”.
(1)一條線段的中點 這條線段的“二倍點”;(填“是”或“不是”)
(深入研究)
如圖2,若線段AB=20cm,點M從點B的位置開始,以每秒2cm的速度向點A運動,當點M到達點A時停止運動,運動的時間為t秒.
(2)問t為何值時,點M是線段AB的“二倍點”;
(3)同時點N從點A的位置開始,以每秒1cm的速度向點B運動,并與點M同時停止.請直接寫出點M是線段AN的“二倍點”時t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, AC BC , BD AD ,垂足分別為C 、D , AC BD , AC 、BD 交于O
(1)求證: CAB DBA ;
(2)求證: SADO SBCO .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).
(1)畫出與△ABC 關于 y 軸對稱的圖形△A1B1C1;
(2)寫出△A1B1C1 各頂點坐標;
(3)求△ABC 的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是我國漢代數(shù)學家趙爽在注解《周脾算經》時給出的“趙爽弦圖”,圖中的四個直角三角形是全等的,如果大正方形ABCD的面積是小正方形EFGH面積的13倍,那么tan∠ADE的值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com