【題目】如圖,在中,,動(dòng)點(diǎn)從點(diǎn)出發(fā),以的速度沿射線運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以2cm/s的速度沿邊BC的延長(zhǎng)線運(yùn)動(dòng),PQ與直線AC相交于點(diǎn)D.設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為t秒,的面積為

(1)直接寫出的長(zhǎng):= ;

(2)求出關(guān)于的函數(shù)關(guān)系式,并求出當(dāng)點(diǎn)運(yùn)動(dòng)幾秒時(shí),;

(3)于點(diǎn),當(dāng)點(diǎn)、運(yùn)動(dòng)時(shí),線段的長(zhǎng)度是否改變?證明你的結(jié)論.

【答案】1AC=cm;(2)當(dāng)點(diǎn)P運(yùn)動(dòng)(2+2)秒時(shí),SPCQ=SABC ;(3)線段DE的長(zhǎng)度不會(huì)改變.證明見解析.

【解析】

1)利用勾股定理求解即可;
2)分兩種情形當(dāng)0t≤4時(shí),當(dāng)t4秒時(shí),分別構(gòu)建方程即可解決問題;
3)過QQMAC,交直線AC于點(diǎn)M,利用全等三角形的判定和性質(zhì)證明四邊形PEQM是平行四邊形,求出DE是定值即可解決問題.

解:(1)∵AB=BC=8cm,∠ABC=90°,

cm

2)當(dāng)0t4時(shí),P在線段AB上,此時(shí)CQ=2t,PB=82t,

,

當(dāng)t4秒時(shí),P在線段AB的延長(zhǎng)線上,此時(shí)CQ=2t,PB=2t8

,

SABC=,

∴當(dāng)t4時(shí),SPCQ=

整理得t24t+16=0,

0,

∴此方程無實(shí)數(shù)解;

當(dāng)t4時(shí),SPCQ=,

整理得t24t16=0,

解得(負(fù)值已舍去),

∴當(dāng)點(diǎn)P運(yùn)動(dòng)()秒時(shí),SPCQ=SABC

3)當(dāng)點(diǎn)P、Q運(yùn)動(dòng)時(shí),線段DE的長(zhǎng)度不會(huì)改變.

證明:如圖2,過QQMAC,交直線AC于點(diǎn)M

PEAC,QMAC,
∴∠AEP=M=90°
AP=CQ,∠A=ACB=MCQ=45°,
∴△APE≌△QCM,

AE=PE=CM=QM=t

∴四邊形PEQM是平行四邊形,

DE是對(duì)角線EM的一半,

又∵EM=AC=8,

DE=4,

∴當(dāng)點(diǎn)P、Q運(yùn)動(dòng)時(shí),線段DE的長(zhǎng)度不會(huì)改變;

同理,當(dāng)點(diǎn)P在點(diǎn)B右側(cè)時(shí),DE=4,

綜上所述,當(dāng)點(diǎn)P、Q運(yùn)動(dòng)時(shí),線段DE的長(zhǎng)度不會(huì)改變.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是ACAB的中點(diǎn),CFABED的延長(zhǎng)線于點(diǎn)F,連接AFCE.

(1)求證:四邊形BCEF是平行四邊形;

(2)當(dāng)△ABC滿足什么條件時(shí),四邊形AECF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次籃球比賽中,如圖隊(duì)員甲正在投籃.已知球出手時(shí)離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時(shí)達(dá)到最大高度4 m,設(shè)籃球運(yùn)行軌跡為拋物線,籃圈距地面3 m.

(1)建立如圖所示的平面直角坐標(biāo)系,問此球能否準(zhǔn)確投中?

(2)此時(shí),對(duì)方隊(duì)員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場(chǎng)要建一個(gè)飼養(yǎng)場(chǎng)(長(zhǎng)方形ABCD),飼養(yǎng)場(chǎng)的一面靠墻(墻最大可用長(zhǎng)度為27米),另三邊用木欄圍成,中間也用木欄隔開,分成兩個(gè)場(chǎng)地,并在如圖所示的三處各留1米寬的門(不用木欄),建成后木欄總長(zhǎng)57米,設(shè)飼養(yǎng)場(chǎng)(長(zhǎng)方形ABCD)的寬為a米.

(1)飼養(yǎng)場(chǎng)的長(zhǎng)為多少米(用含a的代數(shù)式表示).

(2)若飼養(yǎng)場(chǎng)的面積為288m2,求a的值.

(3)當(dāng)a為何值時(shí),飼養(yǎng)場(chǎng)的面積最大,此時(shí)飼養(yǎng)場(chǎng)達(dá)到的最大面積為多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形中,點(diǎn),分別是邊,的中點(diǎn),點(diǎn)是直線上一點(diǎn).將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到線段,連接.

1)如圖1,請(qǐng)直接寫出的數(shù)量及位置關(guān)系;

2)如圖2,若點(diǎn)在線段的延長(zhǎng)線上,猜想線段,之間滿足的數(shù)量關(guān)系,并證明你的結(jié)論.

3)若點(diǎn)在線段的反向延長(zhǎng)線上,請(qǐng)?jiān)趫D3中補(bǔ)全圖形并直接寫出線段,,之間滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級(jí)男生1000米跑的水平,從中隨機(jī)抽取部分男生進(jìn)行測(cè)試,并把測(cè)試成績(jī)分為D、C、B、A四個(gè)等次繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你依圖解答下列問題:

(1)a=   ,b=   ,c=   

(2)扇形統(tǒng)計(jì)圖中表示C等次的扇形所對(duì)的圓心角的度數(shù)為   度;

(3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機(jī)選取兩名男生參加全市中學(xué)生1000米跑比賽,請(qǐng)用列表法或畫樹狀圖法,求甲、乙兩名男生同時(shí)被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知RtABC,ACB=90°AC=BC,D是線段AB上的一點(diǎn)不與A、B重合).過點(diǎn)BBECD,垂足為E將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn),得到線段CF連結(jié)EF設(shè)BCE度數(shù)為.

1補(bǔ)全圖形

試用含的代數(shù)式表示CDA

2 ,的大小.

3直接寫出線段AB、BECF之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果商場(chǎng)經(jīng)銷一種高檔水果,原價(jià)每千克50元,連續(xù)兩次降價(jià)后每千克32元,若每次下降的百分率相同.

1)求每次下降的百分率;

2)若每千克盈利10元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,商場(chǎng)決定采取適當(dāng)?shù)臐q價(jià)措施,若每千克漲價(jià)1元,日銷售量將減少20千克,現(xiàn)該商場(chǎng)要保證每天盈利6000元,且要盡快減少庫存,那么每千克應(yīng)漲價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,點(diǎn)上,,連接,以為直徑作,分別與交于點(diǎn),,點(diǎn)的中點(diǎn),連接,過點(diǎn)的切線,交于點(diǎn),則的長(zhǎng)為____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案