分析 由三角形中位線定理得出DE∥AC,由直角三角形斜邊上的中線性質(zhì)得出CD=$\frac{1}{2}$AB=AD=BD,由等腰三角形的性質(zhì)得出∠B=∠DCE,證出∠FEC=∠DCE,得出DC∥EF,即可證出四邊形CDEF是平行四邊形.
解答 證明:∵在Rt△ABC中,∠ACB=90°,D、E分別為邊AB、BC的中點(diǎn),
∴DE∥AC,CD=$\frac{1}{2}$AB=AD=BD,
∴∠B=∠DCE,
∵∠FEC=∠B,
∴∠FEC=∠DCE,
∴DC∥EF,
∴四邊形CDEF是平行四邊形.
點(diǎn)評(píng) 本題考查了平行四邊形的判定、三角形中位線定理、直角三角形斜邊上的中線性質(zhì)、等腰三角形的性質(zhì)、平行線的判定;熟練掌握平行四邊形的判定方法,證明DC∥EF是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 2 | C. | $\sqrt{3}$ | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com