【題目】為了提高同學(xué)們的業(yè)余生活,我校開(kāi)展了豐富多彩的“社團(tuán)”活動(dòng),為了了解學(xué)生最喜愛(ài)的“社團(tuán)”活動(dòng),隨機(jī)抽取了部分同學(xué)進(jìn)行調(diào)查,規(guī)定每人從“舞蹈”、“唱歌”、“畫畫”、“手工”和“其他”中選擇一個(gè),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖:
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)計(jì)算扇形統(tǒng)計(jì)圖中“其他”所在扇形圓心角的度數(shù);
(3)若喜愛(ài)“其他”的5名同學(xué)中,八年級(jí)有3人,九年級(jí)有2人,現(xiàn)從中隨機(jī)抽取兩人去幫助教務(wù)處整理圖書,請(qǐng)用列表法或樹狀圖法求這兩人來(lái)自同一個(gè)年級(jí)的概率.
【答案】(1)見(jiàn)解析;(2)30°;(3)
【解析】
(1)先根據(jù)畫畫的人數(shù)及所占的百分比求出總?cè)藬?shù),進(jìn)而可求出喜歡唱歌和手工的人數(shù),即可補(bǔ)全條形統(tǒng)計(jì)圖;
(2)先求出“其他”所占的百分比,再用360°乘以這個(gè)百分比即可;
(3)先用樹狀圖表示出所有的情況數(shù),再?gòu)闹姓页鲞@兩人來(lái)自同一個(gè)年級(jí)的情況數(shù),即可求概率.
(1)由兩幅統(tǒng)計(jì)圖可以看出:抽取學(xué)生人數(shù)為:15÷25%=60(人),喜愛(ài)唱歌的人數(shù)為: 60×50%﹣12=18(人),喜歡手工的人數(shù)為: 60×50%﹣15﹣5=10(人),補(bǔ)全條形統(tǒng)計(jì)圖如下:
(2) ,
∴“其他”所在扇形圓心角的度數(shù)為30°;
(3)設(shè)八年級(jí)的3名同學(xué)分別為a,b,c,九年級(jí)的2名同學(xué)分別為A,B,根據(jù)題意或樹狀圖如下:
由樹狀圖可以看出,所有等可能的結(jié)果共20中,其中兩人來(lái)自同一個(gè)年級(jí)的結(jié)果有8種,所以,這兩人來(lái)自同一個(gè)年級(jí)的概率是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為1的正方形OABC的頂點(diǎn)O與原點(diǎn)重合,頂點(diǎn)A,C分別在x軸、y軸上,反比例函數(shù)y=(k≠0,x>0)的圖象與正方形的兩邊AB、BC分別交于點(diǎn)M、N,連接OM、ON、MN.若∠MON=45°,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于二次函數(shù)y=x2﹣4x+3和一次函數(shù)y=﹣x+1,我們把y=t(x2﹣4x+3)+(1﹣t)(﹣x+1)稱為這兩個(gè)函數(shù)的“再生二次函數(shù)”,其中t是不為零的實(shí)數(shù),其圖象記作拋物線E.現(xiàn)有點(diǎn)A(1,0)和拋物線E上的點(diǎn)B(2,n),請(qǐng)完成下列任務(wù):
(嘗試)
⑴判斷點(diǎn)A是否在拋物線E上;
⑵求n的值.
(發(fā)現(xiàn))通過(guò)(1)和(2)的演算可知,對(duì)于t取任何不為零的實(shí)數(shù),拋物線E總過(guò)定點(diǎn),請(qǐng)你求出定點(diǎn)的坐標(biāo).
(應(yīng)用)二次函數(shù)y=﹣3x2+8x﹣5是二次函數(shù)y=x2﹣4x+3和一次函數(shù)y=﹣x+1的一個(gè)“再生二次函數(shù)”嗎?如果是,求出t的值;如果不是,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E,F分別是AB,CD的中點(diǎn).
(1)求證:四邊形AEFD是平行四邊形;(2)若∠A=60°,AB=2AD=4,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩段長(zhǎng)度相等的路面,分別交給甲、乙兩個(gè)施工隊(duì)同時(shí)進(jìn)行施工,甲、乙兩個(gè)施工隊(duì)鋪設(shè)路面的長(zhǎng)度米與施工時(shí)間時(shí)的函數(shù)關(guān)系的部分圖象如圖所示.下列四種說(shuō)法:施工2小時(shí),甲隊(duì)的施工速度比乙隊(duì)的施工速度快;施工4小時(shí),甲、乙兩隊(duì)施工的長(zhǎng)度相同;施工6小時(shí),甲隊(duì)比乙隊(duì)多施工了10米;如果甲隊(duì)施工速度不變,乙隊(duì)在施工6小時(shí)后,施工速度增加到每小時(shí)12米,結(jié)果兩隊(duì)同時(shí)完成鋪設(shè)任務(wù),則路面鋪設(shè)任務(wù)的長(zhǎng)度為110米.其中正確的有
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),拋物線y=ax2+x+c與x軸交于A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(4,0),與y軸交于點(diǎn)C,直線y=kx+2經(jīng)過(guò)A、C兩點(diǎn).
(1)如圖1,求a、c的值;
(2)如圖2,點(diǎn)P為拋物線y=ax2+x+c在第一象限的圖象上一點(diǎn),連接AP、CP,設(shè)點(diǎn)P的橫坐標(biāo)為t,△ACP的面積為S,求S與t的函數(shù)解析式,并直接寫出自變量t的取值范圍;
(3)在(2)的條件下,點(diǎn)D為線段AC上一點(diǎn),直線OD與直線BC交于點(diǎn)E,點(diǎn)F是直線OD上一點(diǎn),連接BP、BF、PF、PD,BF=BP,∠FBP=90°,若OE=,求直線PD的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】廣宇、承義兩名同學(xué)分別進(jìn)行5次射擊訓(xùn)練,訓(xùn)練成績(jī)(單位:環(huán))如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
廣宇 | 9 | 8 | 7 | 7 | 9 |
承義 | 6 | 8 | 10 | 8 | 8 |
對(duì)他們的訓(xùn)練成績(jī)作如下分析,其中說(shuō)法正確的是( )
A.廣宇訓(xùn)練成績(jī)的平均數(shù)大于承義訓(xùn)練成績(jī)平均數(shù)
B.廣宇訓(xùn)練成績(jī)的中位數(shù)與承義訓(xùn)練成績(jī)中位數(shù)不同
C.廣宇訓(xùn)練成績(jī)的眾數(shù)與承義訓(xùn)練成績(jī)眾數(shù)相同
D.廣宇訓(xùn)練成績(jī)比承義訓(xùn)練成績(jī)更加穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(1, 0)、B(4,0)、M(5,3).動(dòng)點(diǎn)P從A點(diǎn)出發(fā),沿x軸以每秒1個(gè)單位的速度向右移動(dòng),過(guò)點(diǎn)P的直線l:y= -x+b也隨之移動(dòng).設(shè)移動(dòng)時(shí)間為t秒.
(1)當(dāng)t=1時(shí),求直線l的解析式.
(2)若直線l與線段BM有公共點(diǎn),求t的取值范圍.
(3)當(dāng)點(diǎn)M關(guān)于直線l的對(duì)稱點(diǎn)落在坐標(biāo)軸上時(shí),求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com