【題目】如圖,,,,…,是等腰直角三角形,點(diǎn),,,…,在反比例函數(shù)的圖象上,斜邊,,,…都在軸上,則點(diǎn)的坐標(biāo)是________.
【答案】
【解析】
過(guò)點(diǎn)P1作P1M⊥x軸,由于△OA1P1是等腰直角三角形,因而P1A1=OA1,因而可以設(shè)P1點(diǎn)的坐標(biāo)是(a,a),把(a,a)代入解析式即可求出a=2,因而求出P1的坐標(biāo)是(2,2),進(jìn)一步得到OA1=4,再根據(jù)△P2A1A2是等腰直角三角形,設(shè)P2的縱坐標(biāo)是b,因而橫坐標(biāo)是b+ 4,把P2的坐標(biāo)代入解析式,即可求出b,然后即可求出點(diǎn)B的坐標(biāo).
如圖,
過(guò)點(diǎn)P1作P1M⊥x軸于M,∵△OA1P1是等腰直角三角形,∴P1M=OM,∴設(shè)P1點(diǎn)的坐標(biāo)是(a,a),把(a,a)代入解析式得到a=2,∴P1的坐標(biāo)是(2,2),則OA1=4,∵△P2A1A2是等腰直角三角形,過(guò)點(diǎn)P2作P2N⊥x軸于N,設(shè)P2的縱坐標(biāo)是b,∴橫坐標(biāo)是b+4,把P2的坐標(biāo)代入解析式中,∴b+4=,∴,∴點(diǎn)P2的橫坐標(biāo)為,∴P2點(diǎn)的坐標(biāo)是,∴點(diǎn)A2的坐標(biāo)是,故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AA1,A1A2,A2A3,A3B,AB分別是五個(gè)半圓的直徑,兩只小蟲(chóng)同時(shí)出發(fā),以相同的速度從點(diǎn)A到點(diǎn)B,甲蟲(chóng)沿ADA1,A1EA2,A2FA3,A3GB路線爬行,乙蟲(chóng)沿ACB路線爬行,則下列結(jié)論正確的是( )
A. 甲先到點(diǎn)B B. 乙先到點(diǎn)B C. 甲、乙同時(shí)到點(diǎn)B D. 無(wú)法確定誰(shuí)先到點(diǎn)B
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是一座拋物線形拱橋,P 處有一照明燈,水面OA 寬4 m.從O,A 兩處觀測(cè)P 處,仰角分別為α,β,且tanα= ,tanβ=.以O 為原點(diǎn),OA 所在直線為x 軸建立平面直角坐標(biāo)系.
(1)求點(diǎn)P的坐標(biāo);
(2)若水面上升1 m,則水面寬多少米( 取1.41,結(jié)果精確到0.1 m)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是BC的中點(diǎn),DE⊥AB,DF⊥AC,垂足分別是E、F,BE=CF.
(1)圖中共有_________對(duì)全等三角形.
(2)求證:AD是△ABC的角平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值:
(1)(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),其中a=1,b=﹣2.
(2)先化簡(jiǎn)(1+)÷,再?gòu)末?/span>1,0,1,2,3中選取一個(gè)合適的數(shù)作為x的值代入求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn),與軸交于點(diǎn),過(guò)點(diǎn)作軸,交拋物線于點(diǎn),并過(guò)點(diǎn)作軸,垂足為.拋物線和反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn),四邊形的面積是.
求反比例函數(shù)、二次函數(shù)的解析式及拋物線的對(duì)稱軸;
如圖,點(diǎn)從點(diǎn)出發(fā)以每秒個(gè)單位的速度沿線段向點(diǎn)運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā)以相同的速度沿線段img src="http://thumb.zyjl.cn/questionBank/Upload/2019/05/12/08/1a8f9afd/SYS201905120854095644903087_ST/SYS201905120854095644903087_ST.023.png" width="24" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />向點(diǎn)運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒.
①當(dāng)為何值時(shí),四邊形為等腰梯形;
②設(shè)與對(duì)稱軸的交點(diǎn)為,過(guò)點(diǎn)作軸的平行線交于點(diǎn),設(shè)四邊形的面積為,求面積關(guān)于時(shí)間的函數(shù)解析式,并指出的取值范圍;當(dāng)為何值時(shí),有最大值或最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一水壩的橫斷面是梯形,下底長(zhǎng),斜坡的坡度為,另一腰與下底的交角為,且長(zhǎng)為,求它的上底的長(zhǎng)(精確到)(.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將旋轉(zhuǎn)一定的角度后得到,如圖所示,如果,.
指出其旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度
求的長(zhǎng)度;
與的位置關(guān)系如何?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有長(zhǎng)為24m的籬笆,一面利用墻(墻的最大可用長(zhǎng)度a為10m),圍成中間隔有一道籬笆的長(zhǎng)方形花圃.設(shè)花圃的寬AB為xm,面積為Sm2.
(1)求S與x的函數(shù)關(guān)系式;
(2)如果要圍成面積為45m2的花圃,AB的長(zhǎng)是多少米?
(3)能?chē)擅娣e比45 m2更大的花圃嗎?如果能,請(qǐng)求出最大面積,并說(shuō)明圍法;如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com