【題目】如圖,已知拋物線y=ax2+bx+3(a≠0)經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C.
(1)求此拋物線的解析式;
(2)若點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn)(不點(diǎn)B,C重合),過點(diǎn)P作y軸的平行線交直線BC于點(diǎn)D,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①用含m的代數(shù)式表示線段PD的長.
②連接PB,PC,求△PBC的面積最大時(shí)點(diǎn)P的坐標(biāo).
(3)設(shè)拋物線的對(duì)稱軸與BC交于點(diǎn)E,點(diǎn)M是拋物線的對(duì)稱軸上一點(diǎn),N為y軸上一點(diǎn),是否存在這樣的點(diǎn)M和點(diǎn)N,使得以點(diǎn)C、E、M、N為頂點(diǎn)的四邊形是菱形?如果存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);如果不存在,請(qǐng)說明理由.
【答案】(1)y=x2﹣4x+3;(2)①﹣m2+3m,②(,﹣);(3)存在,點(diǎn)M的坐標(biāo)為(2,3),( 2,1﹣2)或(2,1+2)
【解析】
(1)根據(jù)已知拋物線y=ax2+bx+3(a≠0)經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(3,0)代入即可求解;
(2)①先確定直線BC解析式,根據(jù)過點(diǎn)P作y軸的平行線交直線BC于點(diǎn)D,即可用含m的帶上書表示出P和D的坐標(biāo)進(jìn)而求解;
②用含m的代數(shù)式表示出△PBC的面積,可得S是關(guān)于m的二次函數(shù),即可求解;
(3)根據(jù)(1)中所得二次函數(shù)圖象和對(duì)稱軸先得點(diǎn)E的坐標(biāo)即可寫出點(diǎn)三個(gè)位置的點(diǎn)M的坐標(biāo).
解:(1)∵拋物線y=ax2+bx+3(a≠0)經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,
∴,
解得:;
∴拋物線解析式為:y=x2﹣4x+3;
(2)如圖:
①設(shè)P(m,m2﹣4m+3),
將點(diǎn)B(3,0)、C(0,3)代入得直線BC解析式為yBC=﹣x+3.
∵過點(diǎn)P作y軸的平行線交直線BC于點(diǎn)D,
∴D(m,﹣m+3),
∴PD=(﹣m+3)﹣(m2﹣4m+3)=﹣m2+3m.
答:用含m的代數(shù)式表示線段PD的長為﹣m2+3m.
②S△PBC=S△CPD+S△BPD
=OBPD=﹣m2+m
=﹣(m﹣)2+.
∴當(dāng)m=時(shí),S有最大值.
當(dāng)m=時(shí),m2﹣4m+3=﹣.
∴P(,﹣).
答:△PBC的面積最大時(shí)點(diǎn)P的坐標(biāo)為(,﹣).
(3)存在這樣的點(diǎn)M和點(diǎn)N,使得以點(diǎn)C、E、M、N為頂點(diǎn)的四邊形是菱形.
根據(jù)題意,點(diǎn)E(2,1),
∴EF=CF=2,
∴EC=,
根據(jù)菱形的四條邊相等,
∴ME=EC=,
∴M(2,1﹣)或(2,1+)
當(dāng)EM=EF=2時(shí),M(2,3)
∴點(diǎn)M的坐標(biāo)為M1(2,3),M2(2,1﹣2),M3(2,1+2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面角坐標(biāo)系xOy中,有一個(gè)等腰直角三角形△AOB,∠OAB=90°,直角邊AO在x軸上,且AO=1,將Rt△AOB繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后,再將各邊長擴(kuò)大一倍,得到等腰直角三角形A1OB1;將Rt△A1OB1繞原點(diǎn)O順時(shí)針轉(zhuǎn)90°后,再將各邊長擴(kuò)大一倍,得到等腰三角形A2OB2......依此規(guī)律,得到等腰直角三角形A2017OB2017,則點(diǎn)B2017的坐標(biāo)_________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】這是一個(gè)古老的傳說,講一個(gè)犯人利用概率來增加他得到寬恕的機(jī)會(huì).給他兩個(gè)碗,一個(gè)里面裝著5個(gè)黑球,另一個(gè)里面裝著除顏色不同外其它都一樣的5個(gè)白球.把他的眼睛蒙著,然后要選擇一個(gè)碗,并從里面拿出一個(gè)球,如果他拿的是黑球就要繼續(xù)關(guān)在監(jiān)獄里面,如果他拿的是白球,就將獲得自由.在蒙住眼睛之前允許他把球混合,重新分裝在兩個(gè)碗內(nèi)(兩個(gè)碗球數(shù)可以不同).你能設(shè)想一下這個(gè)犯人怎么做,使得自己獲得自由的機(jī)會(huì)最大?則犯人獲得自由的最大機(jī)會(huì)是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了參加西部博覽會(huì),資陽市計(jì)劃印制一批宣傳冊(cè).該宣傳冊(cè)每本共10頁,由A、B兩種彩頁構(gòu)成.已知A種彩頁制版費(fèi)300元/張,B種彩頁制版費(fèi)200元/張,共計(jì)2400元.(注:彩頁制版費(fèi)與印數(shù)無關(guān))
(1)每本宣傳冊(cè)A、B兩種彩頁各有多少張?
(2)據(jù)了解,A種彩頁印刷費(fèi)2.5元/張,B種彩頁印刷費(fèi)1.5元/張,這批宣傳冊(cè)的制版費(fèi)與印刷費(fèi)的和不超過30900元.如果按到資陽展臺(tái)處的參觀者人手一冊(cè)發(fā)放宣傳冊(cè),預(yù)計(jì)最多能發(fā)給多少位參觀者?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,AC=16,BD=12,動(dòng)點(diǎn)P在線段AC上從點(diǎn)A向點(diǎn)C以4個(gè)單位/秒的速度運(yùn)動(dòng),過點(diǎn)P作EF⊥AC,交菱形ABCD的邊于點(diǎn)E、F,在直線AC上有一點(diǎn)G,使△AEF與△GEF關(guān)于EF對(duì)稱.設(shè)菱形ABCD被四邊形AEGF蓋住部分的面積為S1,未被蓋住部分的面積為S2,點(diǎn)P運(yùn)動(dòng)時(shí)間為x秒.
(1)用含x的代數(shù)式分別表示S1,S2;
(2)若S1=S2,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,中,為內(nèi)一點(diǎn),將繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)角得到,點(diǎn)的對(duì)應(yīng)點(diǎn)分別為點(diǎn),且三點(diǎn)在同一直線上.
(1)填空: (用含的代數(shù)式表示);
(2)如圖2,若,請(qǐng)補(bǔ)全圖形,再過點(diǎn)作于點(diǎn),然后探究線段之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若,且點(diǎn)滿足,直接寫出點(diǎn)到的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=8,AD=17,折疊紙片使點(diǎn)B落在邊AD上的E處,折痕為PQ.當(dāng)E在AD邊上移動(dòng)時(shí),折痕的端點(diǎn)P,Q也隨著移動(dòng).若限定P,Q分別在邊BA,BC上移動(dòng),則點(diǎn)E在邊AD上移動(dòng)的最大距離為( 。
A.6B.7C.8D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,平面直角坐標(biāo)系中,直線 y1=x+3與拋物線y2=﹣+2x 的圖象如圖,點(diǎn)P是 y2 上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到直線 y1 的最短距離為()
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,點(diǎn)P在邊AB上,點(diǎn)D、Q分別為邊BC上的點(diǎn),線段AD的延長線與線段PQ的延長線交于點(diǎn)F,連接CP交AF于點(diǎn)E,若∠BPF=∠APC,FD=FQ.
(1)如圖1,求證:AF⊥CP;
(2)如圖2,作∠AFP的平分線FM交AB于點(diǎn)M,交BC于點(diǎn)N,若FN=MN,求證:;
(3)在(2)的條件下,連接DM、MQ,分別交PC于點(diǎn)G、H,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com