【題目】如圖,在由10個完全相同的正三角形構成的網格圖中,∠α、∠β如圖所示,則sin(α+β)=_____________.
【答案】
【解析】
連接DE,利用等腰三角形的性質及三角形內角和定理可得出∠α=30°,同理可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°結合∠AED=∠AEC+∠CED可得出∠AED=90°,設等邊三角形的邊長為a,則AE=2a,DE=a,利用勾股定理可得出AD的長,由三角函數定義即可得出答案.
解:連接DE,如圖所示:
在△ABC中,∠ABC=120°,BA=BC,
∴∠α=30°,
同理得:∠CDE=∠CED=30°=∠α.
又∵∠AEC=60°,
∴∠AED=∠AEC+∠CED=90°.
設等邊三角形的邊長為a,則AE=2a,DE=2×sin60°a=a,
∴AD=a,
∴sin(α+β)= =.
故答案為:.
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠CAB的平分線交⊙O于點D,過點D作AC的垂線交AC的延長線于點E,連接BC交AD于點F.
(1)猜想ED與⊙O的位置關系,并證明你的猜想;
(2)若AB=6,AD=5,求AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線經過,兩點,點為拋物線的頂點,拋物線的對稱軸與軸交于點.
(1)求拋物線的解析式;
(2)動點從點出發(fā),沿線段向終點作勻速運動,速度為每秒1個單位長度,運動時間為,過點作,交于點,以為正方形的一邊,向上作正方形,邊交于點,延長交于點.
①當為何值時,點落在拋物線上;
②在點運動過程中,是否存在某一時刻,使得四邊形為平行四邊形?若存在,求出此時刻的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,二次函數y=ax2+bx+c交x軸于A(-4,0)、B(2,0),在y軸上有一點 E(0,-2),連接AE.
(1)求二次函數的表達式;
(2)點D是第二象限內的拋物線上一動點.若tan∠AED=,求此時點D坐標;
(3)連接AC,點P是線段CA上的動點,連接OP,把線段PO繞著點P順時針旋轉90°至PQ,點Q是點O的對應點.當動點P從點C運動到點A時,判斷動點Q的軌跡并求動點Q所經過的路徑長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校計劃組織學生參加“書法”、“攝影”、“航!、“圍棋”四個課外興趣小組,要求每人必須參加,并且只能選擇其中一個小組,為了解學生對四個課外興趣小組的選擇情況,學校從全體學生中隨機抽取部分學生進行問卷調查,并把調查結果制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(部分信息未給出),請你根據給出的信息解答下列問題:
(1)求參加這次問卷調查的學生人數,并補全條形統(tǒng)計圖(畫圖后請標注相應的數據);
(2)m=_______,n=_______;
(3)若該校共有1200名學生,試估計該校選擇“圍棋”課外興趣小組的學生有多少人?
(4)分別用A、B、C、D表示“書法”、“攝影”、“航!薄ⅰ皣濉,小明和小紅從中各選取一個小組,請用樹狀圖法或列表法求出“兩人選擇小組不同”的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線與直線交于點,點.
(1)求拋物線的解析式;
(2)點是軸上方拋物線上一點,點是直線上一點,若以為頂點的四邊形是以 為邊的平行四邊形,求點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:在平面直角坐標系中,O為坐標原點,拋物線y=ax2﹣2ax﹣3a分別交x軸于A、B兩點(點A在點B的側),與y軸交于點C,連接AC,tan∠ACO=.
(1)如圖l,求a的值;
(2)如圖2,D是第一象限拋物線上的點,過點D作y軸的平行線交CB的延長線于點E,連接AE交BD于點F,AE=BD,求點D的坐標;
(3)如圖3,在(2)的條件下,連接AD,P是第一象限拋物線上的點(點P與點D不重合),過點P作AD的垂線,垂足為Q,交x軸于點N,點M在x軸上(點M在點N的左側),點G在NP的延長線上,MP=OG,∠MPN﹣∠MOG=45°,MN=10.點S是△AQN內一點,連接AS、QS、NS,AS=AQ,QS=SN,求QS的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】以下說法正確的是( )
A.小明做了次擲圖釘的實驗,發(fā)現次釘尖朝上,由此他說釘尖朝上的概率是
B.一組對邊平行,另一組對邊相等的四邊形是平行四邊形
C.點都在反比例函數圖象上,且則;
D.對于一元二元方程,若則方程的兩個根互為相反數
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com