【題目】如圖,在菱形ABCD中,取CD中點(diǎn)O,以O為圓心OD為半徑作圓交ADEBC的延長線交于點(diǎn)F,AB4,BE5,連結(jié)OB

1)求DE的長;

2)求tanOBC的值.

【答案】1;(2 .

【解析】

1)根據(jù)菱形的性質(zhì)得到ABBCCD4,ADBC,根據(jù)圓周角定理得到∠DEC90°,根據(jù)勾股定理即可得到結(jié)論;

2)連接DF,過OOHCFH,推出四邊形ECFD是矩形,得到DFCE3,CFDE,根據(jù)三角函數(shù)的定義即可得到結(jié)論.

解:(1)∵四邊形ABCD是菱形,

ABBCCD4ADBC,

CD是⊙O的直徑,

∴∠DEC90°,

∴∠BCE=∠DEC90°

CE3,

DE

2)連接DF,過OOHCFH,

CD是⊙O的直徑,

∴∠DFC90°,

∴四邊形ECFD是矩形,

DFCE3,CFDE,

CH,

OHDF,

BHBC+CH,

tanOBC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)Ax軸上,點(diǎn)B,C在反比例函數(shù)yk0x0)的圖象上.有一個(gè)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿ABCO的路線(圖中“→”所示路線)勻速運(yùn)動(dòng),過點(diǎn)PPMx軸,垂足為M,設(shè)POM的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t,則S關(guān)于t的函數(shù)圖象大致為( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,ABCDBE均為等腰直角三角形,其中ABC=90°,DBE=90°

(1)求證:AD=CE;

(2)求證:AD和CE垂直.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組借助無人飛機(jī)航拍,如圖,無人飛機(jī)從A處飛行至B處需12秒,在地面C處同一方向上分別測(cè)得A處的仰角為75°,B處的仰角為30°.已知無人飛機(jī)的飛行速度為3米/秒,則這架無人飛機(jī)的飛行高度為(結(jié)果保留根號(hào))__________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地,先是一段平路,然后是一段上坡路,小明騎車從甲地出發(fā),到達(dá)乙地后立即返回甲地,途中休息了一段時(shí)間,假設(shè)小明騎車在平路、上坡、下坡時(shí)分別保持勻速前進(jìn),已知小明騎車上坡的速度比在平路上的速度每小時(shí)少5km,下坡的速度比在平路上的速度每小時(shí)多5km.設(shè)小明出發(fā)xh后,到達(dá)離甲地ykm的地方,圖中的折線OABCDE表示yx之間的函數(shù)關(guān)系.

①小明騎車在平路上的速度為15km/h

②小明途中休息了0.1h;

③小明從甲地去乙地來回過程中,兩次經(jīng)過距離甲地5.5km的地方的時(shí)間間隔為0.15h

則以上說法中正確的個(gè)數(shù)為( 。

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校積極參與垃圾分類活動(dòng),以班級(jí)為單位收集可回收的垃圾,下面是七年級(jí)各班一周收集的可回收垃圾的質(zhì)量頻數(shù)表和頻數(shù)直方圖(每組含前一個(gè)邊界值,不含后一個(gè)邊界值).

某校七年級(jí)各班一周收集的可回收垃圾的質(zhì)量頻數(shù)表

組別(kg

頻數(shù)

4.0~4.5

2

4.5~5.0

a

5.0~5.5

3

5.5~6.0

1

1)求a的值;

2)已知收集的可回收垃圾以0.8/kg被回收,該年級(jí)這周收集的可回收垃圾被回收后所得的金額能否達(dá)到50.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的面積為10cm2BP平分∠ABC,APBP,垂足為P,連接CP,若三角形內(nèi)有一點(diǎn)M,則點(diǎn)M落在BPC內(nèi)(包括邊界)的概率為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,AB的垂直平分線分別交邊BC、AB于點(diǎn)D、E,聯(lián)結(jié)AD

1)如果∠CAD:∠DAB12,求∠CAD的度數(shù);

2)如果AC1,tanB,求∠CAD的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A0,2),在x軸上取一點(diǎn)B,連接AB,以A為圓心,任意長為半徑畫弧,分別交OA、AB于點(diǎn)MN,再以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點(diǎn)D,連接AD并延長交x軸于點(diǎn)P.若OPAOAB相似,則點(diǎn)P的坐標(biāo)為( 。

A. 10B. ,0C. 0D. 2,0

查看答案和解析>>

同步練習(xí)冊(cè)答案