【題目】(1)問題發(fā)現(xiàn)

如圖1,在RtABCRtCDE中,∠ACB=DCE=90°,∠CAB=CDE=45°,點D是線段AB上一動點,連接BE.

填空: 的值為 ;②∠DBE的度數(shù)為 .

(2)類比探究

如圖2,在RtABCRtCDE中,∠ACB=DCE=90°,∠CAB=CDE=60°,點D是線段AB上一動點,連接BE.請判斷的值及∠DBE的度數(shù),并說明理由.

(3)拓展延伸

如面3,在(2)的條件下,將點D改為直線AB上一動點,其余條件不變,取線段DE的中點M,連接BM、CM,若AC=2,則當△CBM是直角三角形時,線段BE的長是多少?請直接寫出答案.

【答案】11,90°;(2,90°,理由見解析;(33+3-

【解析】

1)易得△ABC和△CDE為等腰直角三角形,所以AC=BC,CD=CE,通過證明△ACD△BCE,可得AD=BE∠CAD=∠CBE=45°,進而得出答案;

2)通過證明△ACD∽△BCE,可得的值,∠CBE=∠CAD=60°,即可求∠DBE的度數(shù);

3)分點D在線段AB上和BA延長線上兩種情況討論,由直角三角形的性質(zhì)可證CM=BM=,即可求DE=,由相似三角形的性質(zhì)可得∠ABE=90°,BE=AD,由勾股定理可求BE的長.

解:(1∵∠ACB=∠DCE=90°∠CAB=∠CDE=45°,

∴∠ABC=∠CAB=45°,∠CDE=∠CED=45°

∴AC=BCCD=CE

∵∠ACD+∠BCD=∠BCE+∠BCD=90°,

∴∠ACD=∠BCE,

△ACD△BCE中,

∵AC=BC,∠ACD=∠BCE,CD=CE

∴△ACD≌△BCESAS),

∴AD=BE,∠CAD=∠CBE=45°

=1,∠DBE=∠ABC+∠CBE=90°

故答案為:190°

2=,∠DBE=90°,理由如下:

∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,

∴∠ACD=∠BCE∠CED=∠ABC=30°,

∴tan∠ABC=tan30°==.

∵∠ACB=∠DCE=90°∠CAB=∠CDE=60°,

∴Rt△ACB∽Rt△DCE

=,且∠ACD=∠BCE

∴△ACD∽△BCE,

==∠CBE=∠CAD=60°,

∴∠DBE=∠ABC+∠CBE=90°

3)若點D在線段AB上,如圖,

由(2)知:==,∠ABE=90°

∴BE=AD,

∵AC=2,∠ACB=90°,∠CAB=60°,

∴AB=4,BC=2.

∵∠ECD=∠ABE=90°,且點MDE中點,

∴CM=BM=DE,

△CBM是直角三角形,

∴CM2+BM2=BC2=22,

∴BM=CM=,

∴DE=2,

∵DB2+BE2=DE2

4-AD2+AD2=24,

∴AD=+1,

∴BE=AD=3+;

若點D在線段BA延長線上,如圖,

同理可得:DE=2BE=AD,

∵BD2+BE2=DE2,

4+AD2+AD2=24,

∴AD=-1,

∴BE=AD=3-.

綜上所述:BE的長為3+3-.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰三角形中,,以為直徑的分別交、于點,過點的切線交的延長線于點

1)求證:

2)若的半徑為5,,求的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國青少年的視力情況已受到全社會的廣泛關注,某校隨機調(diào)研了200名初中七、八、九年級學生的視力情況,并把調(diào)查數(shù)據(jù)繪制成以下統(tǒng)計圖:

1)七年級參加調(diào)查的有多少人?若該校有七年級學生500人,請估計七年級的近視人數(shù);

2)某同學說:“由圖2可知,從七年級到九年級近視率越來越低.”你認為這種說法正確嗎?請做判斷,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A=∠BAE=BE,點DAC邊上,∠1=∠2,AEBD相交于點O

1)求證:AECBED

2)若∠1=42°,求BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l的函數(shù)表達式為yx,點O1的坐標為(1,0),以O1為圓心,O1O為半徑畫圓,交直線l于點P1,交x軸正半軸于點O2;以O2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3;以O3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4;按此做法進行下去,其中的長___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解班級學生數(shù)學課前預習的具體情況,鄭老師對本班部分學生進行了為期一個月的跟蹤調(diào)查,他將調(diào)查結果分為四類:A:很好;B:較好;C:一般;D:不達標,并將調(diào)查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

1C類女生有   名,D類男生有   名,將上面條形統(tǒng)計圖補充完整;

2)扇形統(tǒng)計圖中課前預習不達標對應的圓心角度數(shù)是   ;

3)為了共同進步,鄭老師想從被調(diào)查的A類和D類學生中各隨機機抽取一位同學進行一幫一互助學習,請用畫樹狀圖或列表的方法求出所選兩位同學恰好是一男一女同學的概率,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線經(jīng)過點,且對稱軸為直線,其部分圖象如圖所示對于此拋物線有如下四個結論:①;②;③;④若,則時的函數(shù)值小于時的函數(shù)值其中正確結論的個數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店計劃購進一批甲、乙兩種款式的運動服進行銷售,進價和售價如下表所示:

運動服款式

進價(元/套)

80

100

售價(元/套)

120

160

若購進兩種款式的運動服共300套,且投入資金不超過26800元.

1 該服裝店應購進甲款運動服至少多少套?

2)若服裝店購進甲款運動服的進價每套降低a元,并保持這兩款運動服的售價不變,且最多購進240套甲款運動服.如果這批運動服售出后,服裝店剛好獲利18480元,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ACB中,∠ACB=90°,CEACB的中線,分別過點A、點CCEAB的平行線,交于點D

(1)求證:四邊形ADCE是菱形;

(2)若CE=4,且∠DAE=60°,求ACB的面積

查看答案和解析>>

同步練習冊答案