【題目】如圖矩形OABC的頂點O與平面直角坐標(biāo)系的原點重合,A,C分別在x,y軸上,B的坐標(biāo)為(-5,4),D為邊BC上一點,連接OD,若線段OD繞點D順時針旋轉(zhuǎn)90°O恰好落在AB邊上的點E,則點E的坐標(biāo)為(

A. (-5,3) B. (-5,4) C. (-5, D. (-5,2)

【答案】A

【解析】

先判定△DBE≌△OCD,可得BD=OC=4,設(shè)AE=x,BE=4﹣x=CD,依據(jù)BD+CD=5,可得4+4﹣x=5,進(jìn)而得到AE=3,據(jù)此可得E(﹣5,3).

由題可得AO=BC=5,AB=CO=4,由旋轉(zhuǎn)可得DE=OD,∠EDO=90°.

又∵∠B=∠OCD=90°,∴∠EDB+∠CDO=90°=∠COD+∠CDO,∴∠EDB=∠DOC,∴△DBE≌△OCD,∴BD=OC=4,設(shè)AE=x,BE=4﹣x=CD

BD+CD=5,∴4+4﹣x=5,解得x=3,∴AE=3,∴E(﹣5,3).

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩同學(xué)從A地出發(fā),騎自行車在同一條路上行駛到B地,他們離出發(fā)地的距離s(千米)和行駛時間t(小時)之間的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖中提供的信息,有下列說法:

1)他們都行駛了18千米;

2)甲在途中停留了0.5小時;

3)乙比甲晚出發(fā)了0.5小時;

4)相遇后,甲的速度小于乙的速度;

5)甲、乙兩人同時到達(dá)目的地

其中符合圖象描述的說法有(

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只不透明的袋子中裝有個相同小球,分別標(biāo)有不等的自然數(shù)、,小麗每次從袋中同時摸出個小球,并計算摸出的這個小球上數(shù)字之和,記錄后將小球放回袋中攪勻,進(jìn)行重復(fù)實驗.實驗數(shù)據(jù)如下表:

摸球總次數(shù)

和為出現(xiàn)的頻數(shù)

和為出現(xiàn)的頻率

如果實驗繼續(xù)進(jìn)行下去,出現(xiàn)和為的頻率將穩(wěn)定在它的概率附近.試估計出現(xiàn)和為的概率;

根據(jù)中結(jié)論,求出自然數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,過作一直線與相交于點,過垂直于點,過垂直于點,在上截取,再過垂直.若.則與四邊形的面積之和為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線 l 經(jīng)過點A(2,﹣3),與 x 軸交于點 B,且與直線y=3x-平行.

(1)求直線l的函數(shù)解析式及點B的坐標(biāo);

(2)如直線l上有一點 M(a,﹣6),過點 M x 軸的垂線,交直線 y=3x-于點N,在線段MN上求一點P,使△PAB是直角三角形,請求出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于二次函數(shù)的圖象與性質(zhì),下列結(jié)論錯誤的是 ( )

A. 當(dāng)x=3時,函數(shù)有最大值-2

B. 當(dāng)x>3時,yx的增大而減小

C. 拋物線可由 經(jīng)過平移得到

D. 該函數(shù)的圖象與x軸有兩個交點

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,點分別是平分線上的點,于點,于點,于點,下列結(jié)論錯誤的是(

A.

B.

C.的中點

D.圖中與互余的角有兩個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠ABC=30°,CD平分∠ACB


1)尺規(guī)作圖:作線段AB的垂直平分線l
(要求:保留作圖痕跡,不寫作法)
2)記直線lAB,CD的交點分別是點E,F.當(dāng)AC=4時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線分別與軸,軸交于兩點.

(1)求線段AB的長度;

(2)若點在第二象限,且△為等腰直角三角形,求點的坐標(biāo);

查看答案和解析>>

同步練習(xí)冊答案