【題目】如圖,、的切線,切點分別為、的延長線與的直徑的延長線交于點,連接,

探索的位置關系,并加以證明;

,,求的值.

【答案】(1),證明見解析;

【解析】

(1)連接OD,證COD≌△COB,則∠COD=COB;又∠DOB是等腰ODE的外角,則∠DOB=2DEB,由此可證得∠COB=DEB;同位角相等,則DEOC;
(2)RtABC中,由勾股定理,易求得AB的長;然后在RtADO中,用⊙O的半徑表示出OA的長,再根據(jù)勾股定理求出⊙O的半徑.則RtCOD中,即可求得∠OCD的正切值,由(1)知:∠ADE=OCE,由此可求出∠ADE的正切值.

(1),

連接

、的切線,

,

又∵

,

,,

,

的半徑為,

中有

解得

,

中,,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將函數(shù)y= (x-2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(1,m),B(4,n)平移后的對應點分別為點A′,B′,若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,河的兩岸l1l2相互平行,A、Bl1上的兩點,CDl2上的兩點,某人在點A處測得∠CAB=90°,DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某數(shù)學興趣小組在活動課上測量學校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7 m,看旗桿頂部M的仰角為45°;小紅的眼睛與地面的距離(CD)是1.5 m,看旗桿頂部M的仰角為30°.兩人相距30米且位于旗桿兩側(點B,N,D在同一條直線上).求旗桿MN的高度.(參考數(shù)據(jù):≈1.414,≈1.732,結果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】的弦的半徑之比為,則弦所對的圓周角等于________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某氣球內充滿一定質量的氣體,當溫度不變時氣球內氣體的氣壓pkPa是氣體體積Vm3的反比例函數(shù),其圖象如圖所示

1寫出這一函數(shù)的表達式

2當氣體體積為1 m3,氣壓是多少?

3當氣球內的氣壓大于140 kPa,氣球將爆炸,為了安全考慮氣體的體積應不小于多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點C是線段AB上的一個動點,AB=1,分別以ACCB為一邊作正方形,用S表示這兩個正方形的面積之和,下列判斷正確的是(   )

A. 當點CAB的中點時,S最小 B. 當點CAB的中點時,S最大

C. 當點CAB的三等分點時,S最小 D. 當點CAB的三等分點時,S最大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形中,,邊上一點,作等邊,連接.

1)求證:

2交于點,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD是正方形,△ADF旋轉一定角度后得到△ABE,如圖所示,如果AF=3,AB=7,

(1)指出旋轉中心和旋轉角度;

(2)DE的長度;

(3)BEDF的位置關系如何?請說明理由.

查看答案和解析>>

同步練習冊答案