【題目】如圖,拋物線y=-[(x-2)2+n]與x軸交于點A(m-2,0)和B(2m+3,0)(點A在點B的左側(cè)),與y軸交于點C,連結(jié)BC.
(1)求m、n的值;
(2)如圖,點N為拋物線上的一動點,且位于直線BC上方,連接CN、BN.求△NBC面積的最大值;
(3)如圖,點M、P分別為線段BC和線段OB上的動點,連接PM、PC,是否存在這樣的點P,使△PCM為等腰三角形,△PMB為直角三角形同時成立?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
【答案】(1)m=1;n=-9;(2)最大值為;(3)存在,P點坐標(biāo)為(,0)或(,0).
【解析】
(1)利用拋物線的解析式確定對稱軸為直線x=2,再利用對稱性得到2-(m-2)=2m+3-2,解方程可得m的值,從而得到A(-1,0),B(5,0),然后把A點坐標(biāo)代入y=- [(x-2)2+n]可求出n的值;
(2)作ND∥y軸交BC于D,如圖2,利用拋物線解析式確定C(0,3),再利用待定系數(shù)法求出直線BC的解析式為y=-x+3,設(shè)N(x,-x2+x+3),則D(x,-x+3),根據(jù)三角形面積公式,利用S△NBC=S△NDC+S△NDB可得S△BCN=-x2+x,然后利用二次函數(shù)的性質(zhì)求解;
(3)先利用勾股定理計算出BC=,再分類討論:當(dāng)∠PMB=90°,則∠PMC=90°,△PMC為等腰直角三角形,MP=MC,設(shè)PM=t,則CM=t,MB=-t,證明△BMP∽△BOC,利用相似比可求出BP的長,再計算OP后可得到P點坐標(biāo);當(dāng)∠MPB=90°,則MP=MC,設(shè)PM=t,則CM=t,MB=-t,證明△BMP∽△BCO,利用相似比可求出BP的長,再計算OP后可得到P點坐標(biāo).
(1)∵拋物線的解析式為y=- [(x-2)2+n]=- (x-2)2-n,
∴拋物線的對稱軸為直線x=2,
∵點A和點B為對稱點,
∴2-(m-2)=2m+3-2,解得m=1,
∴A(-1,0),B(5,0),
把A(-1,0)代入y=- [(x-2)2+n]得9+n=0,解得n=-9;
(2)作ND∥y軸交BC于D,如圖2,
拋物線解析式為y=- [(x-2)2-9]=-x2+x+3,
當(dāng)x=0時,y=3,則C(0,3),
設(shè)直線BC的解析式為y=kx+b,
把B(5,0),C(0,3)代入得,解得,
∴直線BC的解析式為y=-x+3,
設(shè)N(x,-x2+x+3),則D(x,-x+3),
∴ND=-x2+x+3-(-x+3)=-x2+3x,
∴S△NBC=S△NDC+S△NDB=×5×ND=-x2+x=-(x-)2+,
當(dāng)x=時,△NBC面積最大,最大值為;
(3)存在.
∵B(5,0),C(0,3),
∴BC=,
當(dāng)∠PMB=90°,則∠PMC=90°,△PMC為等腰直角三角形,MP=MC,
設(shè)PM=t,則CM=t,MB=-t,
∵∠MBP=∠OBC,
∴△BMP∽△BOC,
∴,即 ,解得t=,BP=,
∴OP=OB-BP=5-=,
此時P點坐標(biāo)為(,0);
當(dāng)∠MPB=90°,則MP=MC,
設(shè)PM=t,則CM=t,MB=-t,
∵∠MBP=∠CBO,
∴△BMP∽△BCO,
∴,即,解得t=,BP=,
∴OP=OB-BP=5-=,
此時P點坐標(biāo)為(,0);
綜上所述,P點坐標(biāo)為(,0)或(,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在中,,以點為圓心,長為半徑的圓交于點,的延長線交⊙于點,連接,是⊙上一點,點與點位于兩側(cè),且,連接.
(1)求證:;
(2)若,,求的長及的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形OABC的頂點A的坐標(biāo)為(4,3),點D是邊OC上的一點,點E在直線OB上,連接DE、CE,則DE+CE的最小值為( 。
A. 5B. +1C. 2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,四邊形是矩形,,,動點從點出發(fā),沿射線方向以每秒個單位長度的速度運動;同時動點從點出發(fā),沿軸正半軸方向以每秒個單位長度的速度運動.設(shè)點,點的運動時間為.
(1)當(dāng)時,按要求回答下列問題
①______________;
②求經(jīng)過,,三點的拋物線的解析式,若將拋物線在軸上方的部分圖象記為,已知直線與有兩個不同的交點,求的取值范圍;
(2)連接,點,在運動過程中,記與矩形重疊部分的面積為,求與的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時出發(fā),設(shè)慢車行駛的時間為x(h),兩車之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關(guān)系.若第二列快車也從甲地出發(fā)駛往乙地,速度與第一列快車相同.在第一列快車與慢車相遇0.5小時后,第二列快車與慢車相遇.則第二列快車比第一列快車晚出發(fā)__小時.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2 ,0)和(3 ,0)之間,對稱軸是x=1.對于下列結(jié)論:① ab<0;② 2a+b=0;③ 3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤ 當(dāng)-1<x<3時,y>0. 其中正確結(jié)論的個數(shù)為( )
A. 2個B. 3個C. 4個D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“才飲長沙水,又食武昌魚”.因一代偉人毛澤東的佳句,“鄂州武昌魚”名揚(yáng)天下.某網(wǎng)店專門銷售某種品牌真空包裝的武昌魚熟食產(chǎn)品,成本為30元/盒,每天銷售y(盒)與銷售單價x(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天這種武昌魚熟食產(chǎn)品的銷售量不低于240盒,當(dāng)銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3 600元,試確定這種武昌魚熟食產(chǎn)品銷售單價的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,PC切⊙O于點P,過A作直線AC⊥PC交⊙O于另一點D,連接PA、PB.
(1)求證:AP平分∠CAB;
(2)若P是直徑AB上方半圓弧上一動點,⊙O的半徑為2,則
①當(dāng)弦AP的長是_____時,以A,O,P,C為頂點的四邊形是正方形;
②當(dāng)的長度是______時,以A,D,O,P為頂點的四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初三年級進(jìn)行女子800米測試,甲、乙兩名同學(xué)同時起跑,甲同學(xué)先以a米/秒的速度勻速跑,一段時間后提高速度,以米/秒的速度勻速跑,b秒到達(dá)終點,乙同學(xué)在第60秒和第140秒時分別減慢了速度,設(shè)甲、乙兩名同學(xué)所的路程為s(米),乙同學(xué)所用的時間為t(秒),s與t之間的函數(shù)圖象如圖所示.
(1)乙同學(xué)起跑的速度為______米/秒;
(2)求a、b的值;
(3)當(dāng)乙同學(xué)領(lǐng)先甲同學(xué)60米時,直接寫出t的值是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com