如圖,已知拋物線C1:y=a(x+2)2-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)B的橫坐標(biāo)是1;
(1)求a的值;
(2)如圖,拋物線C2與拋物線C1關(guān)于x軸對(duì)稱,將拋物線C2向右平移,平移后的拋物線記為C3,拋物線C3的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)O成中心對(duì)稱時(shí),求拋物線C3的解析式.
(1)∵點(diǎn)B是拋物線與x軸的交點(diǎn),橫坐標(biāo)是1,
∴點(diǎn)B的坐標(biāo)為(1,0),
∴當(dāng)x=1時(shí),0=a(1+2)2-5,
a=
5
9


(2)設(shè)拋物線C3解析式為y=a′(x-h)2+k,
∵拋物線C2與C1關(guān)于x軸對(duì)稱,且C3為C2向右平移得到,
a′=-
5
9
,
∵點(diǎn)P、M關(guān)于點(diǎn)O對(duì)稱,且點(diǎn)P的坐標(biāo)為(-2,-5),
∴點(diǎn)M的坐標(biāo)為(2,5),
∴拋物線C3的解析式為y=-
5
9
(x-2)2+5=-
5
9
x2+
20
9
x+
25
9
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知點(diǎn)A的坐標(biāo)是(-1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC,BC,過(guò)A,B,C三點(diǎn)作拋物線.
(1)求拋物線的解析式;
(2)點(diǎn)E是AC延長(zhǎng)線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,連接BD,求直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=∠CBD?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
第三問(wèn)改成,在(2)的條件下,點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PCD的面積是△BCD面積的三分之一,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:拋物線y=(k-1)x2+2kx+k-2與x軸有兩個(gè)不同的交點(diǎn).
(1)求k的取值范圍;
(2)當(dāng)k為整數(shù),且關(guān)于x的方程3x=kx-1的解是負(fù)數(shù)時(shí),求拋物線的解析式;
(3)在(2)的條件下,若在拋物線和x軸所圍成的封閉圖形內(nèi)畫(huà)出一個(gè)最大的正方形,使得正方形的一邊在x軸上,其對(duì)邊的兩個(gè)端點(diǎn)在拋物線上,試求出這個(gè)最大正方形的邊長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線y=ax2+bx+c(a≠0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,已知拋物線的對(duì)稱軸為直線x=-1,B(1,0),C(0,-3).
(1)求二次函數(shù)y=ax2+bx+c(a≠0)的解析式;
(2)在拋物線對(duì)稱軸上是否存在一點(diǎn)P,使點(diǎn)P到A、C兩點(diǎn)距離之差最大?若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖(1),拋物線y=ax2-3ax+b經(jīng)過(guò)A(-1,0),C(3,-4)兩點(diǎn),與y軸交于點(diǎn)D,與x軸交于另一點(diǎn)B.
(1)求此拋物線的解析式;
(2)若直線L:y=kx+1(k≠0)將四邊形ABCD的面積分成相等的兩部分,求直線L的解析式;
(3)如圖(2),過(guò)點(diǎn)E(1,1)作EF⊥x軸于點(diǎn)F,將△AEF繞平面內(nèi)某點(diǎn)旋轉(zhuǎn)180°后得△MNT(點(diǎn)M、N、T分別與點(diǎn)A,E,F(xiàn)對(duì)應(yīng)),使點(diǎn)M,N在拋物線上,求點(diǎn)M,N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(0,-3),且頂點(diǎn)P的坐標(biāo)為(1,-4),
(1)求這個(gè)函數(shù)的關(guān)系式;
(2)試問(wèn)x為何值時(shí),函數(shù)y的值大于0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某地一古城墻門(mén)洞呈拋物線形,已知門(mén)洞的地面寬度AB=12米,兩側(cè)距地面5米高C、D處各有一盞路燈,兩燈間的水平距離CD=8米,求這個(gè)門(mén)洞的高度.(提示:選擇適當(dāng)?shù)奈恢脼樵c(diǎn)建立直角坐標(biāo)系,例如圖:以AB的中點(diǎn)為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C1:y=ax2+4ax+4a-5的頂點(diǎn)為P,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),點(diǎn)B的橫坐標(biāo)是1.
(1)求拋物線的解析式和頂點(diǎn)P的坐標(biāo);
(2)將拋物線沿x軸翻折,再向右平移,平移后的拋物線C2的頂點(diǎn)為M,當(dāng)點(diǎn)P、M關(guān)于點(diǎn)B成中心對(duì)稱時(shí),求平移后的拋物線C2的解析式;
(3)直線y=-
3
5
x+m
與拋物線C1、C2的對(duì)稱軸分別交于點(diǎn)E、F,設(shè)由點(diǎn)E、P、F、M構(gòu)成的四邊形的面積為s,試用含m的代數(shù)式表示s.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

直線y=-
1
3
x+1
分別交x軸、y軸于A、B兩點(diǎn),△AOB繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°后得到△COD,拋物線y=ax2+bx+c經(jīng)過(guò)A、C、D三點(diǎn).
(1)寫(xiě)出點(diǎn)A、B、C、D的坐標(biāo);
(2)求經(jīng)過(guò)A、C、D三點(diǎn)的拋物線表達(dá)式,并求拋物線頂點(diǎn)G的坐標(biāo);
(3)在直線BG上是否存在點(diǎn)Q,使得以點(diǎn)A、B、Q為頂點(diǎn)的三角形與△COD相似?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案