如圖,C為線段AB的中點(diǎn),D為AB上一點(diǎn),E為AD的中點(diǎn),且AD=6,EC=2.
求:CD、AB的長(zhǎng)?
考點(diǎn):兩點(diǎn)間的距離
專題:
分析:根據(jù)線段的中點(diǎn)的性質(zhì),可得AE、ED的長(zhǎng),根據(jù)線段的和差,可得CD、AC的長(zhǎng),在根據(jù)線段中點(diǎn)的性質(zhì),可得答案.
解答:解:∵E為AD中點(diǎn),AD=6,
∴AE=ED=
1
2
AD=3.
∵EC=2,
∴CD=ED-EC=1,
AC=AE+EC=5. 
又∵C為AB中點(diǎn)
∴AB=2AC=10.
點(diǎn)評(píng):本題考查了兩點(diǎn)間的距離,利用了線段的和差,線段中點(diǎn)的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在下列各數(shù):0.51525354…,
49
100
,0.2,
7
,
131
11
327
中,無理數(shù)的個(gè)數(shù)是( 。
A、2個(gè)B、3個(gè)C、4個(gè)D、5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知A、B是線段EF上兩點(diǎn),EA:AB:BF=1:2:3,M、N分別為EA、BF的中點(diǎn),且MN=8cm,則EF長(zhǎng)(  )
A、9cmB、10cm
C、11cmD、12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線OC,BC的函數(shù)關(guān)系式分別是y1=x和y2=-x+6,兩直線的交點(diǎn)為C.
(1)點(diǎn)C的坐標(biāo)是(
 
,
 
),當(dāng)x
 
時(shí),y1>y2?
(2)△COB是
 
三角形,請(qǐng)證明.
(3)在直線y1找點(diǎn)D,使△DOB的面積是△COB的一半,求點(diǎn)D的坐標(biāo).
(4)作直線a⊥x軸,并交直線y1于點(diǎn)E,直線y2于點(diǎn)F,若EF的長(zhǎng)度不超過3,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

圖形可以幫助刻畫和描述問題;圖形可以幫助發(fā)現(xiàn)和尋找解決問題的思路;圖形可以幫助表述和記憶一些結(jié)果.積累一些圖形模塊,在類比發(fā)現(xiàn)中你會(huì)體驗(yàn)到問題解決的輕松,看圖想事,看圖說理一定會(huì)讓你受益匪淺!
【探索與發(fā)現(xiàn)】
如圖(1),梯形ABCD中,AD∥BC,對(duì)角線AC、BD相交于點(diǎn)O.則
S△ABD
S△BCD
=
OA
OC
成立嗎?試說明理由.
【思路與分析】
過點(diǎn)A作AE⊥BD于點(diǎn)E,過點(diǎn)C作CF⊥BD于點(diǎn)F.由于△ABD與△BCD同底不同高,所以二者的面積比可以轉(zhuǎn)化為對(duì)應(yīng)高的比;容易得到△AOE∽△COF,從而據(jù)相似三角形的性質(zhì),借助等量
AE
CF
的代換,
S△ABD
S△BCD
=
OA
OC
成立.如圖(2),對(duì)于四邊形ABCD,
S△ABD
S△BCD
=
OA
OC
的結(jié)論是否正確?試說明理由.
【應(yīng)用與綜合】
圖(2)中的四邊形ABCD沿BD邊對(duì)折,連接并延長(zhǎng)AC交BD(或其延長(zhǎng)線)于點(diǎn)E,圖(3)和圖(4)是由此可能得到的情形:
在圖(3)的情形下,試比較大。
S△ABD
S△BCD
 
AE
CE
;(用“>”或“<”或“=”填空)
在圖(4)的情形下,試比較大小:
S△ABD
S△BCD
 
AE
CE
;(用“>”或“<”或“=”填空)
【拓展與延伸】
(1)如圖(5),E、F分別是△ABC兩邊AB、AC的中點(diǎn),線段BF、CE相交于點(diǎn)P,則
CP
PE
=
 
;
(2)如圖(6),E、F分別是△ABC兩邊AB、AC上的點(diǎn),且 AE=mEB,AF=nFC,線段BF、CE相交于點(diǎn)P,則
CP
PE
=
 

(3)如圖(7),在△ABC內(nèi)任取一點(diǎn)P,連接并延長(zhǎng)AP、BP、CP,分別交對(duì)邊于點(diǎn)D、E、F,則
PD
AD
+
PE
BE
+
PF
CF
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次方程x2-mx+2m-1=0的兩個(gè)實(shí)數(shù)根分別是x1、x2,且x12+x22=7,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某水果生產(chǎn)基地喜獲豐收,收獲水果200噸,經(jīng)市場(chǎng)調(diào)查,可采用批發(fā)、零售、冷庫儲(chǔ)藏后銷售三種方式,并按這三種方式銷售,計(jì)劃平均每噸的售價(jià)及成本如下表:
銷售方式批發(fā)零售儲(chǔ)藏后銷售
售價(jià)(元/噸)300045005500
成本(元/噸)70010001200
若經(jīng)過一段時(shí)間,水按計(jì)劃全部售出獲得的總利潤(rùn)為y(元),水果零售x(噸),且批發(fā)量是的零售量3倍
(1)求y與x之間的函數(shù)關(guān)系式;
(2)由于天氣原因,經(jīng)冷庫儲(chǔ)藏售出的水果銷售比零售量大,為了獲得更多利潤(rùn),要求銷售成本不超過189000元,求該生產(chǎn)基地按計(jì)劃全部售完水果獲得的最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,身高1.6米的小明從距路燈的底部(點(diǎn)O)20米的點(diǎn)A沿AO方向行走14米到點(diǎn)C處,小明在A處,頭頂B在路燈投影下形成的影子在M處.
(1)已知燈桿垂直于路面,試標(biāo)出路燈P的位置和小明在C處,頭頂D在路燈投影下形成的影子N的位置.
(2)若路燈(點(diǎn)P)距地面8米,小明從A到C時(shí),身影的長(zhǎng)度是變長(zhǎng)了還是變短了?變長(zhǎng)或變短了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀理解
如圖,在△ABC中,AD平分∠BAC,求證:
AB
BD
=
AC
CD

小明在證明此題時(shí),想通過證明三角形相似來解決,但發(fā)現(xiàn)圖中無相似三角形,于是過點(diǎn)B作BE∥AC交AD的延長(zhǎng)線于點(diǎn)E,構(gòu)造△ACD∽△EBD,則
AB
BD
=
AC
CD

于是小明得出結(jié)論:在△ABC中,AD平分∠BAC,則
AB
BD
=
AC
CD

請(qǐng)完成小明的證明過程.

查看答案和解析>>

同步練習(xí)冊(cè)答案