【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請判斷AB與CD的位置關系并說明理由;
(2)如圖2,在(1)的結論下,當∠E=90°保持不變,移動直角頂點E,使∠MCE=∠ECD,當直角頂點E點移動時,問∠BAE與∠MCD是否存在確定的數(shù)量關系?
(3)如圖3,在(1)的結論下,P為線段AC上一定點,點Q為直線CD上一動點,當點Q在射線CD上運動時(點C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關系? (2、3小題只需選一題說明理由)
【答案】(1)AB∥CD;(2)∠BAE+∠MCD=90°;(3)∠BAC=∠PQC+∠QPC.
【解析】試題分析:(1)先根據(jù)CE平分∠ACD,AE平分∠BAC,得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由可知故可得出結論;
(2)過E作EF∥AB,根據(jù)平行線的性質(zhì)可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故再由∠MCE=∠ECD,即可得出結論;
(3)根據(jù)AB∥CD, 可知 故∠BAC=∠PQC+∠QPC.
試題解析:(1)∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵
∴
∴AB∥CD;
(2)
過E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵
∴
∵∠MCE=∠ECD,
∴
(3)∵AB∥CD,
∴
∵
∴∠BAC=∠PQC+∠QPC.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,點A,B的坐標分別為A(a,0),B(b,0),且a,
b滿足 |a+2|+=0,點C的坐標為(0,3).
(1)求a,b的值及S三角形ABC;
(2)若點M在x軸上,且S三角形ACM=S三角形ABC,試求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系中的任意兩點, ,我們把叫做、兩點間的“轉角距離”,記作.
(1)令,O為坐標原點,則= ;
(2)已知O為坐標原點,動點滿足,請寫出x與y之間滿足的關系式,并在所給的直角坐標系中,畫出所有符合條件的點P所組成的圖形;
(3)設是一個定點, 是直線上的動點,我們把的最小值叫做到直線的“轉角距離”.若到直線的“轉角距離”為10,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在Rt△ABC中,∠C=90°,AB=10,BC=6,點P從點A出發(fā),沿折線AB﹣BC向終點C運動,在AB上以每秒5個單位長度的速度運動,在BC上以每秒3個單位長度的速度運動,點Q從點C出發(fā),沿CA方向以每秒個單位長度的速度運動,P,Q兩點同時出發(fā),當點P停止時,點Q也隨之停止.設點P運動的時間為t秒.
(1)求線段AQ的長;(用含t的代數(shù)式表示)
(2)連結PQ,當PQ與△ABC的一邊平行時,求t的值;
(3)如圖②,過點P作PE⊥AC于點E,以PE,EQ為鄰邊作矩形PEQF,點D為AC的中點,連結DF.設矩形PEQF與△ABC重疊部分圖形的面積為S.
①當點Q在線段CD上運動時,求S與t之間的函數(shù)關系式;
②直接寫出DF將矩形PEQF分成兩部分的面積比為1:2時t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下面的解題過程的橫線上填空,并在括號內(nèi)注明理由
.如圖,已知∠A=∠F,∠C=∠D,試說明BD∥CE.
解:∵∠A=∠F(已知)
∴AC∥DF( )
∴∠D=∠ ( )
又∵∠C=∠D(已知)
∴∠1=∠C(等量代換)
∴BD∥CE( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】慶祝中華人民共和國成立70周年閱兵式于2019年10月1日在天安門廣場隆重舉行,此次閱兵約9萬人參與演練及現(xiàn)場保障工作,將數(shù)據(jù)9萬用科學記數(shù)法表示為( )
A.9×103B.9×104C.9×105D.9×106
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】央視熱播節(jié)目“朗讀者”激發(fā)了學生的閱讀興趣.某校為滿足學生的閱讀需求,欲購進一批學生喜歡的圖書.學校組織學生會成隨機抽取部分學生進行問卷調(diào)查,被調(diào)查學生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類.根據(jù)調(diào)查結果繪制了統(tǒng)計圖(未完成).請根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了 名學生;
(2)將條形統(tǒng)計圖補充完整;
(3)圖2中“小說類”所在扇形的圓心角為 度;
(4)若該學校共有學生2500人,估計該校喜歡“社科類”書籍的學生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com