【題目】某商家將一種電視機(jī)按進(jìn)價(jià)提高35%后定價(jià),然后打出“九折酬賓,外送50元出租車(chē)費(fèi)”的廣告,結(jié)果每臺(tái)電視機(jī)獲利208元.
(1)求每臺(tái)電視機(jī)的進(jìn)價(jià);
(2)另有一家商家出售同類(lèi)產(chǎn)品,按進(jìn)價(jià)提高40%,然后打出“八折酬賓”的廣告,如果你想買(mǎi)這種產(chǎn)品,應(yīng)選擇哪一個(gè)商家?
【答案】(1)1200元;(2)第二家.
【解析】
試題(1)定價(jià)=進(jìn)價(jià)×(1+35%),九折優(yōu)惠就是售價(jià)=標(biāo)價(jià)×90%,獲利=售價(jià)-進(jìn)價(jià)-50元的出租車(chē)費(fèi)
(2)求出第二家的售價(jià)=進(jìn)價(jià)×(1+40%)×80%,然后與第一家進(jìn)行比較,誰(shuí)低就選擇誰(shuí).
試題解析:(1)設(shè)每臺(tái)電視機(jī)的進(jìn)價(jià)為元,則x(1+35%)×90%-50-x=208 解得:x=1200元
答: 每臺(tái)電視機(jī)的進(jìn)價(jià)為1200元.
(2)1200×(1+40%)×80%=1344元 1200+208=1408元 1408>1344
答:應(yīng)選擇第二家.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=-x2-x+與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸于點(diǎn)C,已知點(diǎn)D(0,-).
(1)求直線AC的解析式;
(2)如圖1,P為直線AC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△PBD的面積最大時(shí),過(guò)P作PQ⊥x軸于點(diǎn)Q,M為拋物線對(duì)稱(chēng)軸上的一動(dòng)點(diǎn),過(guò)M作y軸的垂線,垂足為點(diǎn)N,連接PM、NQ,求PM+MN+NQ的最小值;
(3)在(2)問(wèn)的條件下,將得到的△PBQ沿PB翻折得到△PBQ′,將△PBQ′沿直線BD平移,記平移中的△PBQ′為△P′B′Q″,在平移過(guò)程中,設(shè)直線P′B′與x軸交于點(diǎn)E,則是否存在這樣的點(diǎn)E,使得△B′EQ″為等腰三角形?若存在,求此時(shí)OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其對(duì)稱(chēng)軸交拋物線于點(diǎn)D,交x軸于點(diǎn)E,已知OB=OC=6.
(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);
(2)連接BD,F(xiàn)為拋物線上一動(dòng)點(diǎn),當(dāng)∠FAB=∠EDB時(shí),求點(diǎn)F的坐標(biāo);
(3)平行于x軸的直線交拋物線于M、N兩點(diǎn),以線段MN為對(duì)角線作菱形MPNQ,當(dāng)點(diǎn)P在x軸上,且PQ=MN時(shí),求菱形對(duì)角線MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】老師和小明同學(xué)玩數(shù)學(xué)游戲.老師取出一個(gè)不透明的口袋,口袋中裝有三張分別標(biāo)有數(shù)字1,2,3的卡片,卡片除數(shù)字外其余都相同,老師要求小明同學(xué)兩次隨機(jī)抽取一張卡片,并計(jì)算兩次抽到卡片上的數(shù)字之積是奇數(shù)的概率.于是小明同學(xué)用畫(huà)樹(shù)狀圖的方法尋求他兩次抽取卡片的所有可能結(jié)果.如圖是小明同學(xué)所畫(huà)的正確樹(shù)狀圖的一部分.
(1)補(bǔ)全小明同學(xué)所畫(huà)的樹(shù)狀圖;
(2)求小明同學(xué)兩次抽到卡片上的數(shù)字之積是奇數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,點(diǎn)A, 0, B在同一條直線上,OD平分∠AOC, OE平分∠BOC.
(1)若∠B0D=160°,求∠BOE的度數(shù);
(2) 若∠COE比∠COD多60°.求∠COE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過(guò)點(diǎn)B作⊙O的切線BD,與CA的延長(zhǎng)線交于點(diǎn)D,與半徑AO的延長(zhǎng)線交于點(diǎn)E,過(guò)點(diǎn)A作⊙O的切線AF,與直徑BC的延長(zhǎng)線交于點(diǎn)F.
(1)求證:△ACF∽△DAE;
(2)若S△AOC=,求DE的長(zhǎng);
(3)連接EF,求證:EF是⊙O的切線.
【答案】(1) 見(jiàn)解析; (2)3 ;(3)見(jiàn)解析.
【解析】試題分析:(1)根據(jù)圓周角定理得到∠BAC=90°,根據(jù)三角形的內(nèi)角和得到∠ACB=60°根據(jù)切線的性質(zhì)得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到結(jié)論;
(2)根據(jù)S△AOC=,得到S△ACF=,通過(guò)△ACF∽△DAE,求得S△DAE=,過(guò)A作AH⊥DE于H,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結(jié)論;
(3)根據(jù)全等三角形的性質(zhì)得到OE=OF,根據(jù)等腰三角形的性質(zhì)得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,過(guò)O作OG⊥EF于G,根據(jù)全等三角形的性質(zhì)得到OG=OA,即可得到結(jié)論.
試題解析:(1)證明:∵BC是⊙O的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°
∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切線,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切線,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵S△AOC=,∴S△ACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴S△DAE=,過(guò)A作AH⊥DE于H,∴AH=DH=DE,∴S△ADE=DEAH=×=,∴DE=;
(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,在△AOF與△BOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過(guò)O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF與△OGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切線.
【題型】解答題
【結(jié)束】
25
【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A,C的坐標(biāo)分別是A(0,2)和C(2,0),點(diǎn)D是對(duì)角線AC上一動(dòng)點(diǎn)(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點(diǎn)E,以線段DE,DB為鄰邊作矩形BDEF.
(1)填空:點(diǎn)B的坐標(biāo)為 ;
(2)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請(qǐng)求出AD的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由;
(3)①求證:;
②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△A1B1A2,△A2B2A3,△A3B3A4,…,△AnBnAn+1都是等腰直角三角形,其中點(diǎn)A1、A2、…、An在x軸上,點(diǎn)B1、B2、…、Bn在直線y=x上,已知OA2=1,則OA2015的長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)經(jīng)過(guò)點(diǎn)A(﹣1,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱(chēng)軸的右側(cè),點(diǎn)E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“掃黑除惡”受到廣大人民的關(guān)注,某中學(xué)對(duì)部分學(xué)生就“掃黑除惡”知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中“很了解”部分所對(duì)應(yīng)扇形的圓心角為_______;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)“掃黑除惡”知識(shí)達(dá)到“很了解”和“基本了解”程度的總?cè)藬?shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com