【題目】先閱讀下面的解題過(guò)程,再解決問(wèn)題.
解方程: x4 -6x2 +5=0.
這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的通常解法是:
設(shè) x2 = y ,則原方程可化為 y2 -6y+5=0.①
解這個(gè)方程,得 y1 =1, y2 =5.當(dāng) y =1時(shí), x=±1;當(dāng) y=5時(shí), x=±.所以原方程有四個(gè)根: x1 =1, x2 =-1, x3 =, x4 =-.
(1)填空:在由原方程得到方程①的過(guò)程中,利用________法達(dá)到降次的目的,體現(xiàn)了________的數(shù)學(xué)思想.
(2)解方程:( x2 -x )2 -4(x2 -x )-12=0.
【答案】(1)換元;轉(zhuǎn)化;(2)x1=3,x2=-2.
【解析】(1)換元達(dá)到降次的目的,利用了轉(zhuǎn)化的思想;
(2)設(shè)x2-x=a,原方程可化為a2-4a-12=0,解方程即可.
(1)換元,轉(zhuǎn)化
(2)解:設(shè)x2-x=a,原方程可化為a2-4a-12=0,
解得a=-2或6,
當(dāng)a=-2時(shí),x2-x+2=0
△=(-1)2-8=-7<0,此方程無(wú)實(shí)數(shù)根,
當(dāng)a=6時(shí),即x2-x-6=0,
(x-3)(x+2)=0,
∴x1=3,x2=-2
∴原方程有兩個(gè)根x1=3,x2=-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,E、F分別是AD、BC的中點(diǎn),連接FE并延長(zhǎng),分別交CD的延長(zhǎng)線于點(diǎn)M、N,∠BME=∠CNE,求證:AB=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】CD經(jīng)過(guò)∠BCA頂點(diǎn)C的一條直線,CA=CB.E,F分別是直線CD上兩點(diǎn),且∠BEC=∠CFA=∠α.
(1)若直線CD經(jīng)過(guò)∠BCA的內(nèi)部,且E,F在射線CD上,請(qǐng)解決下面兩個(gè)問(wèn)題:
①如圖1,若∠BCA=90°,∠α=90°,則BE___CF;(填“>”,“<”或“=”);EF,BE,AF三條線段的數(shù)量關(guān)系是:___.
②如圖2,若0°<∠BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠α與∠BCA關(guān)系的條件___,使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立。
(2)如圖3,若直線CD經(jīng)過(guò)∠BCA的外部,∠α=∠BCA,請(qǐng)?zhí)岢?/span>EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想并證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=BC,點(diǎn)O是AC的中點(diǎn),點(diǎn)P是AC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,O,C重合).過(guò)點(diǎn)A,點(diǎn)C作直線BP的垂線,垂足分別為點(diǎn)E和點(diǎn)F,連接OE,OF.
(1)如圖1,請(qǐng)直接寫出線段OE與OF的數(shù)量關(guān)系;
(2)如圖2,當(dāng)∠ABC=90°時(shí),請(qǐng)判斷線段OE與OF之間的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由
(3)若|CF﹣AE|=2,EF=2,當(dāng)△POF為等腰三角形時(shí),請(qǐng)直接寫出線段OP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、在數(shù)軸上,對(duì)應(yīng)的數(shù)是,點(diǎn)在的右邊,且距點(diǎn)4個(gè)單位長(zhǎng)度,點(diǎn)、是數(shù)軸上兩個(gè)動(dòng)點(diǎn);
(1)點(diǎn)所對(duì)應(yīng)的數(shù)為 ;
(2)當(dāng)點(diǎn)到點(diǎn)、的距離之和是5個(gè)單位時(shí),點(diǎn)所對(duì)應(yīng)的數(shù)是多少?
(3)如果、分別從點(diǎn)、出發(fā),均沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn)每秒走2個(gè)單位長(zhǎng)度,先出發(fā)5秒鐘,點(diǎn)每秒走3個(gè)單位長(zhǎng)度,當(dāng)、兩點(diǎn)相距2個(gè)單位長(zhǎng)度時(shí),點(diǎn)、對(duì)應(yīng)的數(shù)各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)B是線段AD上一點(diǎn),△ABC和△BDE分別是等邊三角形,連接AE和CD.
(1)求證:AE=CD;
(2)如圖2,點(diǎn)P、Q分別是AE、CD的中點(diǎn),試判斷△PBQ的形狀,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),過(guò)點(diǎn)B作BD∥x軸,交y軸于點(diǎn)D,直線AD交反比例函數(shù)y=的圖象于另一點(diǎn)C,則的值為( 。
A. 1:3 B. 1:2 C. 2:7 D. 3:10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在等邊的邊上,,射線于點(diǎn),點(diǎn)是射線上一動(dòng)點(diǎn),點(diǎn)是線段上一動(dòng)點(diǎn),當(dāng)的值最小時(shí),,則為( )
A. 14B. 13C. 12D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.求證:①△ADC≌△CEB;②DE=AD﹣BE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com