【題目】如圖,一漁船由西往東航行,在點(diǎn)測(cè)得海島位于北偏東的方向,前進(jìn)海里到達(dá)點(diǎn),此時(shí),測(cè)得海島位于北偏東的方向,則海島到航線的距離等于________海里.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ABC=64°,BC≠AB.小華根據(jù)下列的作法在△ABC上作圖,如圖所示.按要求完成下列各小題.
作法:①以點(diǎn)B為圓心,適當(dāng)長(zhǎng)度為半徑畫(huà)弧,交BA于點(diǎn)M,交BC于點(diǎn)N.
②分別以點(diǎn)M,N為圓心、大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)O.
③連接BO并延長(zhǎng),交AC于點(diǎn)D.
(1)求∠ABD的度數(shù).
(2)兩個(gè)香料加工廠(分別是點(diǎn)A和點(diǎn)C)和一個(gè)居民區(qū)(點(diǎn)B)的位置示意圖恰好是△ABC,兩個(gè)香料加工廠想合資修建一個(gè)污水處理廠(P),好將生產(chǎn)所得的污水處理到合格水平再排放.為了不污染居民的生活用水,計(jì)劃該污水處理廠建設(shè)在線段BD的延長(zhǎng)線上,并且該污水處理廠與兩個(gè)香料加工廠的距離相等.請(qǐng)你判斷能否找到滿足上述條件的污水處理廠的位置?并在圖中利用畫(huà)圖說(shuō)明理由.(保留作圖痕跡,不要求寫(xiě)作法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過(guò)點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0).點(diǎn)P是直線BC上方的拋物線上一動(dòng)點(diǎn).
(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;
(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ACPB的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們新定義一種三角形:兩邊平方和等于第三邊平方的4倍的三角形叫做常態(tài)三角形。例如:某三角形三邊長(zhǎng)分別是5,6和8,因?yàn)?/span>,所以這個(gè)三角形是常態(tài)三角形。
(1)若△ABC三邊長(zhǎng)分別是2,和4,則此三角形_________常態(tài)三角形(填“是”或“不是”);
(2)若Rt△ABC是常態(tài)三角形,則此三角形的三邊長(zhǎng)之比為__________________(請(qǐng)按從小到大排列);
(3)如圖,Rt△ABC中,∠ACB=90°,BC=6,點(diǎn)D為AB的中點(diǎn),連接CD,若△BCD是常態(tài)三角形,求△ABC的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,
(1)求k的值;
(2)根據(jù)圖象直接寫(xiě)出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍;
(3)過(guò)原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形、、…按如圖所示的方式放置.點(diǎn)、、…和點(diǎn)、、…別在直線和軸上,則點(diǎn)的坐標(biāo)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DF=DC,連接EF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長(zhǎng)為4,求BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,D是BC的中點(diǎn),DE⊥BC,垂足為D,交AB于點(diǎn)E,且BE2﹣EA2=AC2.
(1)求證:∠A=90°;
(2)若AB=8,BC=10,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)O是等腰直角三角形ABC斜邊上的中點(diǎn),AB=BC,E是AC上一點(diǎn),連結(jié)EB.
(1) 如圖1,若點(diǎn)E在線段AC上,過(guò)點(diǎn)A作AM⊥BE,垂足為M,交BO于點(diǎn)F.求證:OE=OF;
(2)如圖2,若點(diǎn)E在AC的延長(zhǎng)線上,AM⊥BE于點(diǎn)M,交OB的延長(zhǎng)線于點(diǎn)F,其它條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com