分析 (1)根據(jù)三角函數(shù)的定義即可得到結(jié)論;
(2)根據(jù)(1)的結(jié)論得到n=asinθ,代入得到(a-b)(1-sinθ),根據(jù)不等式的性質(zhì)即可得到結(jié)論;
(3)根據(jù)相似三角形的性質(zhì)得到HK=$\frac{am}{a+m}$,同理H′G′=$\frac{bn}{b+n}$,設(shè)△ABC的面積我S,于是得到HK=$\frac{am}{a+m}$=$\frac{S}{2(a+m)}$<$\frac{S}{2(b+n)}$=$\frac{bn}{b+n}$=H′G′,即可得到結(jié)論.
解答 解:(1)∵∠B所對(duì)的邊長(zhǎng)分別為b,∠A邊上的高分別為m,
∴∠sinθ=$\frac{m}$,
∴m=bsinθ;
(2)同(1)的結(jié)論可得n=asinθ,則(a+m)-(b+n)=(a-b)(1-sinθ),
∵a>b,sinθ<1,
∴(a-b)(1-sinθ)>0,
∴a+m>b+n;
(3)∵HK∥BC,
∴△AHK∽△ABC,
∴$\frac{HK}{BC}=\frac{AI}{AD}$,
∵BC=a,AD=m,
∴HK=$\frac{am}{a+m}$,同理H′G′=$\frac{bn}{b+n}$,
設(shè)△ABC的面積為S,∴HK=$\frac{am}{a+m}$=$\frac{S}{2(a+m)}$<$\frac{S}{2(b+n)}$=$\frac{bn}{b+n}$=H′G′,
∴正方形的邊在AC上時(shí)面積最大.
點(diǎn)評(píng) 本題考查了相似三角形的判定和性質(zhì),三角函數(shù)的定義,不等式的性質(zhì),正方形的性質(zhì),熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | t<0 | B. | t=0 | C. | t>0 | D. | t≤0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com