先化簡(jiǎn).再求代數(shù)式的值.(
2
a+1
+
a+2
a2-1
)÷
a
a-1
,選一個(gè)你喜歡的數(shù)代入求值.
考點(diǎn):分式的化簡(jiǎn)求值
專題:計(jì)算題
分析:原式括號(hào)中兩項(xiàng)通分并利用同分母分式的加法法則計(jì)算,同時(shí)利用除法法則變形,約分得到最簡(jiǎn)結(jié)果,將a=2代入計(jì)算即可求出值.
解答:解:原式=
2(a+1)+a+2
(a+1)(a-1)
a-1
a

=
3a+4
a(a+1)
,
當(dāng)a=2時(shí),原式=
10
6
=
5
3
點(diǎn)評(píng):此題考查了分式的化簡(jiǎn)求值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

解方程組及不等式組
(1)
5x-2y=1
6x+y=8
;              
(2)
2x+5≤3(x+2)
3x-1≥2x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

定義:如果一個(gè)等腰直角三角形的一個(gè)頂點(diǎn)為矩形的頂點(diǎn),另兩個(gè)頂點(diǎn)分別在矩形的邊上,且任何兩個(gè)頂點(diǎn)都不在矩形的同一邊上,我們這樣的等腰直角三角形為矩形的“內(nèi)接優(yōu)三角形”.如圖,矩形ABCD中,點(diǎn)E、F分別在邊CD、BC上,∠AEF=90°,AE=EF,△AEF為矩形ABCD的內(nèi)接優(yōu)三角形.
(1)正方形是否存在內(nèi)接優(yōu)三角形?
(2)已知△AEF為矩形ABCD的內(nèi)接優(yōu)三角形.
①若AD=4,AB=7,求AF的長(zhǎng);
②設(shè)AB=a,AD=b(a>b),問是否存在斜邊長(zhǎng)為
6
b的內(nèi)接優(yōu)三角形?若存在,請(qǐng)求出
a
b
的值;若不存在,請(qǐng)說明理由;
③若△CEF的外接圓與直線AB相切,求此時(shí)
a
b
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,AB為⊙O的直徑,AB=2
5
,AD與⊙O相切于點(diǎn)A,過點(diǎn)B作BC∥AD,DO平分∠ADC.
(1)判斷DC與⊙O相切嗎?并說明理由;
(2)設(shè)AD=x,BC=y,求y與x的函數(shù)關(guān)系式;
(3)若⊙O與直線DC相切,連接點(diǎn)A與切點(diǎn)E并延長(zhǎng)交BC延長(zhǎng)線于點(diǎn)G,當(dāng)AD=2時(shí),求線段EG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1是立方體和長(zhǎng)方體模型,立方體棱長(zhǎng)和長(zhǎng)方體底面各邊長(zhǎng)都為1,長(zhǎng)方體側(cè)棱長(zhǎng)為2,現(xiàn)用60張長(zhǎng)為6,寬為4的長(zhǎng)方形卡紙,剪出這兩種模型的表面展開圖,有兩種方法:
方法一:如圖2,每張卡紙剪出3個(gè)立方體表面展開圖;
方法二:如圖3,每張卡紙剪出2個(gè)長(zhǎng)方體表面展開圖(圖中只畫出1個(gè)).

設(shè)用x張卡紙做立方體,其余卡紙做長(zhǎng)方體,共做兩種模型y個(gè).要求制作的長(zhǎng)方體的個(gè)數(shù)不超過立方體的個(gè)數(shù).
(1)在圖3中畫出第二個(gè)長(zhǎng)方體表面展開圖,用陰影表示;
(2)請(qǐng)你寫出y關(guān)于x的函數(shù)解析式,并注明自變量x的取值范圍.
(3)設(shè)每只模型(包括立方體和長(zhǎng)方體)平均獲利為w(元),w滿足函數(shù)w=1.6-
x
100
,若想將模型作為教具賣出獲得最大利潤(rùn),則應(yīng)該制作立方體和長(zhǎng)方體各多少個(gè)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

化簡(jiǎn)求值:(x+1)(x-1)-(x-1)2+(2x+1)(x-2),其中x=-
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

N7N9禽流感病毒的球形半徑大約為0.00000012cm,請(qǐng)將這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示為
 
m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若關(guān)于x的一元二次方程x2+4x+k=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)E是正方形ABCD的邊AB的中點(diǎn),連接DE,將△ADE翻折得到△FDE,延長(zhǎng)EF交DC的延長(zhǎng)線于點(diǎn)M,則CD:CM的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案