【題目】為預(yù)防“手足口病”,某校對教室進(jìn)行“藥熏消毒”.已知藥物燃燒階段,室內(nèi)每立方米空氣中的含藥量y(毫克)與燃燒時(shí)間x(分鐘)成正比例;燃燒階段后,y與x成反比例(這兩個(gè)變量之間的關(guān)系如圖所示).現(xiàn)測得藥物10分鐘燃完,此時(shí)教室內(nèi)每立方米空氣含藥量為8毫克.據(jù)以上信息解答下列問題:
(1)求藥物燃燒時(shí)y與x的函數(shù)解析式.
(2)求藥物燃燒階段后y與x的函數(shù)解析式.
(3)當(dāng)“藥熏消毒”時(shí)間到50分鐘時(shí),每立方米空氣中的含藥量對人體方能無毒害作用,那么當(dāng)“藥熏消毒”時(shí)間到50分鐘時(shí)每立方米空氣中的含藥量為多少毫克?
【答案】(1) 藥物燃燒階段的函數(shù)解析式為y=x;(2)藥物燃燒階段后的函數(shù)解析式為y=;(3)當(dāng)“藥熏消毒”時(shí)間到50分鐘時(shí)每立方米空氣中的含藥量為1.6毫克.
【解析】
(1)由于在藥物燃燒階段,y與x成正比例,因此設(shè)函數(shù)解析式為y=k1x(k1≠0),然后由(10,8)在函數(shù)圖象上,利用待定系數(shù)法即可求得藥物燃燒時(shí)y與x的函數(shù)解析式;
(2)由于在藥物燃燒階段后,y與x成反比例,因此設(shè)函數(shù)解析式為y=(k2≠0),然后由(10,8)在函數(shù)圖象上,利用待定系數(shù)法即可求得藥物燃燒階段后y與x的函數(shù)解析式;
(3)當(dāng)“藥熏消毒”時(shí)間到50分鐘時(shí),可知在藥物燃燒階段后,將x=50代入y=,即可求得y的值,則可求得答案.
(1)由于在藥物燃燒階段,y與x成正比例,
因此設(shè)函數(shù)解析式為y=k1x(k1≠0),
由圖示可知,當(dāng)x=10時(shí),y=8.將x=10,y=8代入函數(shù)解析式,
解得k1=.
∴藥物燃燒階段的函數(shù)解析式為y=x.
(2)由于在藥物燃燒階段后,y與x成反比例,因此設(shè)函數(shù)解析式為y=(k2≠0),
同理將x=10,y=8代入函數(shù)解析式,解得k2=80.
∴藥物燃燒階段后的函數(shù)解析式為y=.
(3)當(dāng)x=50時(shí),y===1.6.
∴當(dāng)“藥熏消毒”時(shí)間到50分鐘時(shí)每立方米空氣中的含藥量為1.6毫克.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的,連接BE、CF相交于點(diǎn)D
(1)求證:BE=CF;
(2)當(dāng)四邊形ACDE為平行四邊形時(shí),求證:△ABE為等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x.
(1)在給定的平面直角坐標(biāo)系中,畫出這個(gè)函數(shù)的圖象;
(2)根據(jù)圖象,寫出當(dāng)y<0時(shí),x的取值范圍;
(3)若將此圖象沿x軸向左平移3個(gè)單位,再沿y軸向下平移1個(gè)單位,請直接寫出平移后圖象所對應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高科技創(chuàng)新意識,我市某中學(xué)在“2018年科技節(jié)”活動(dòng)中舉行科技比賽,包括“航模”、“機(jī)器人”、“環(huán)保”、“建模”四個(gè)類別(每個(gè)學(xué)生只能參加一個(gè)類別的比賽),各類別參賽人數(shù)統(tǒng)計(jì)如圖:
請根據(jù)以上信息,解答下列問題:
(1)全體參賽的學(xué)生共有 人,“建模”在扇形統(tǒng)計(jì)圖中的圓心角是 °;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在比賽結(jié)果中,獲得“環(huán)保”類一等獎(jiǎng)的學(xué)生為1名男生和2名女生,獲得“建模”類一等獎(jiǎng)的學(xué)生為1名男生和1名女生,現(xiàn)從這兩類獲得一等獎(jiǎng)的學(xué)生中各隨機(jī)選取1名學(xué)生參加市級“環(huán)保建模”考察活動(dòng),請用列表或畫樹狀圖的方法求選取的兩人中恰為1男生1女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校部分團(tuán)員參加社會(huì)公益活動(dòng),準(zhǔn)備購進(jìn)一批許愿瓶進(jìn)行銷售,并將所得利潤捐給慈善機(jī)構(gòu).根據(jù)市場調(diào)查,這種許愿瓶一段時(shí)間內(nèi)的銷售量y(個(gè))與銷售單價(jià)x(元/個(gè))之間的對應(yīng)關(guān)系如圖所示:
(1)試判斷y與x之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)若許愿瓶的進(jìn)價(jià)為6元/個(gè),按照上述市場調(diào)查的銷售規(guī)律,求銷售利潤w(元)與銷售單價(jià)x(元/個(gè))之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,若許愿瓶的進(jìn)貨成本不超過900元,要想獲得最大的利潤,試確定這種許愿瓶的銷售單價(jià),并求出此時(shí)的最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)相交于A(1,2),B(n,-1)兩點(diǎn).
(1)求雙曲線的解析式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上的三點(diǎn),且x1<0<x2<x3,請直接寫出y1,y2,y3的大小關(guān)系;
(3)觀察圖象,請直接寫出不等式kx+b<的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D、E分別在AB、AC上,且CE=BC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得到CF,連接EF.
(1)求證:△BDC≌△EFC;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B是兩個(gè)工廠,L1、L2是兩條公路,現(xiàn)要在這一地區(qū)建一加油站,要求加油站到A、B兩廠的路程相等,且到兩條路的距離相等,請用尺規(guī)作圖找出符合條件的點(diǎn)P.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A城氣象臺測得臺風(fēng)中心在A城正西方向240km的O處,以每小時(shí)30km的速度向南偏東60°的OB方向移動(dòng),距臺風(fēng)中心150km的范圍內(nèi)是受臺風(fēng)影響的區(qū)域.
(1)A城是否受到這次臺風(fēng)的影響?為什么?
(2)若A城受到臺風(fēng)的影響,求出受臺風(fēng)影響的時(shí)間有多長?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com