分析 (1)利用等弧所對的圓周角相等即可求解;
(2)利用等弧所對的圓周角相等,得到角相等∠APG=∠CAP,判斷出△BOD≌△POH,再得到角相等,從而判斷出線平行;
(3)由三角形相似,得出比例式,△HON∽△CAM,$\frac{OH}{AC}=\frac{HN}{CM}$,再判斷出四邊形CDHM是平行四邊形,最后經(jīng)過計算即可求解.
解答 (1)證明:∵過$\widehat{BC}$的中點P作⊙O的直徑PG,
∴CP=PB,
∵AB,PG是相交的直徑,
∴AG=PB,
∴AG=CP;
(2)證明:如圖 2,連接BG
∵AB、PG都是⊙O的直徑,
∴四邊形AGBP是矩形,
∴AG∥PB,AG=PB,
∵P是弧BC的中點,
∴PC=BC=AG,
∴弧AG=弧CP,
∴∠APG=∠CAP,
∴AC∥PG,
∴PG⊥BC,
∵PH⊥AB,
∴∠BOD=90°=∠POH,
在△BOD和△POH中,
$\left\{\begin{array}{l}{∠BOD=∠POH}\\{∠BOD=∠BOD}\\{OB=OP}\end{array}\right.$,
∴△BOD≌△POH,
∴OD=OH,
∴∠ODH=$\frac{1}{2}$(180°-∠BOP)=∠OPB,
∴DH∥PB∥AG.
(3)解:如圖3,作CM⊥AP于M,ON⊥DH于N,
∴∠HON=$\frac{1}{2}$∠BOP=$\frac{1}{2}$∠COP=∠CAP,
∴△HON∽△CAM,
∴$\frac{OH}{AC}=\frac{HN}{CM}$,
作PQ⊥AC于Q,
∴四邊形CDPQ是矩形,
△APH與△APQ關(guān)于AP對稱,
∴HQ⊥AP,
由(1)有:HK⊥AP,
∴點K在HQ上,
∴CF=PF,
∴FK是△CMP的中位線,
∴CM=2FK=4,MF=PF,
∵CM⊥AP,HK⊥AP,
∴CM∥HK,
∴∠BCM+∠CDH=180°,
∵∠BCM=∠CAP=∠BAP=∠PHK=∠MHK,
∴∠MHK+∠CDH=180°,
∴四邊形CDHM是平行四邊形,
∴DH=CM=4,DN=HN=2,
∵S△ODH=$\frac{1}{2}$DH×ON=$\frac{1}{2}$×4×ON=2$\sqrt{21}$,
∴ON=$\sqrt{21}$,
∴OH=$\sqrt{{HN}^{2}{+ON}^{2}}$=5,
∴AC=$\frac{OH×CM}{HN}$=10.
點評 此題是圓的綜合題,主要考查了相似,圓中的一些角的關(guān)系,解本題的關(guān)鍵是判斷出平行線,難點是作輔助線.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{18}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com