【題目】已知正方形ABCD中,點E,F(xiàn)分別為BC,CD上的點,連接AE,BF相交于點H,且AE⊥BF.

(1)如圖1,連接ACBF于點G,求證:∠AGF=∠AEB+45°;

(2)如圖2,延長BF到點M,連接MC,若∠BMC=45°,求證:AH+BH=BM;

(3)如圖3,在(2)的條件下,若點HBM的三等分點,連接BD,DM,若HE=1,求△BDM的面積.

【答案】(1)證明見解析;(2)證明見解析;(3)6.

【解析】

(1)根據(jù)正方形的性質(zhì)得到∠ACB=ACD=45°,根據(jù)余角 的性質(zhì)得到∠AEB=BFC,于是得到結(jié)論;
(2)過CCKBMK,得到∠BKC=90°,推出四邊形ABCD是正方形,根據(jù)正方形的性質(zhì)得到AB=BC,ABC=BCD=90°,得到∠ABH=BCK,在ABH根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(3)過EENCKN,得到四邊形HENK是矩形,根據(jù)矩形的性質(zhì)得到HK=EN=BH,BHE=NEC,根據(jù)全等三角形的性質(zhì)得到HE=CN=NK=1,求得CK=BH=2,得到BM=6,連接CH,根據(jù)全等三角形的性質(zhì)得到BH=DM=2,BHC=DMC=135°.求得∠DMB=90°,于是得到結(jié)論.

(1)∵四邊形ABCD是正方形,∴∠ABC=BCD=90°,

∴∠ACB=ACD=45°,

AEBF,

∴∠AEB+FBC=90°,

∵∠FBC+BFC=90°,

∴∠AEB=BFC,

∵∠AGF=BFC+ACF,

∴∠AGF=AEB+45°.

(2)CCKBMK,

∴∠BKC=AHB=90°,

∵∠BMC=45°,

CK=MK,

∵四邊形ABCD是正方形,∴AB=BC,ABC=BCD=90°,

∴∠ABH=BCK,

∴△ABH≌△BCK(AAS),

BH=CK=MK,AH=BK,BM=BK+MK=AH+BH.

(3)(2)得,BH=CK=MK,HBM的三等分點,

BH=HK=KM,

EENCKN,∴四邊形HENK是矩形,

HK=EN=BH,BHE=ENC,∴△BHE≌△ENC(ASA),

HE=CN=NK=1,CK=BH=2,

BM=6,

連接CH,

HK=MK,CKMH,BMC=45°,CH=CM,MCH=90°,

∴∠BCH=DCM,∴△BHC≌△DMC(SAS),

BH=DM=2,BHC=DMC=135°,

∴∠DMB=90°,

∴△BDM的面積為DM·BM=6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點BF為圓心,大于長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF

1)四邊形ABEF_______;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)

2AE,BF相交于點O,若四邊形ABEF的周長為40,BF=10,則AE的長為________∠ABC=________°.(直接填寫結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列4個三角形中,均有AB=AC,則經(jīng)過三角形的一個頂點的一條直線能夠?qū)⑦@個三角形分成兩個小等腰三角形的是( 。

A. ①③B. ①②④C. ①③④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADDEEC,FBC中點,GFC中點,如果△ABC的面積是24平方厘米,則陰影部分面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作出函數(shù)的圖象,并利用圖象回答問題:

(1)寫出圖象與軸的交點A的坐標(biāo)________,與軸的交點B的坐標(biāo)________.

(2)當(dāng)時,的取值范圍是______________.

(3)有一點C的坐標(biāo)是(3,4),順次連接點A、B、C得到ABC,三角形ABC的面積為________.

(4)C關(guān)于軸對稱的點D的坐標(biāo)

(5)連接B,D兩點,求直線BD的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)興趣小組的活動中,小明進(jìn)行數(shù)學(xué)探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖①位置放置,ADAE在同一直線上,ABAG在同一直線上.

⑴小明發(fā)現(xiàn)DGBE,請你幫他說明理由.

⑵如圖②,小明將正方形ABCD繞點A逆時針旋轉(zhuǎn),當(dāng)點B恰好落在線段DG上時,請你幫他求出此時BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ΔABC中,AB>BC,AB=AC,DEAB的垂直平分線,垂足為D點,交AC于點E.

1)若∠ABE=40°,求∠EBC的度數(shù);

2)若ΔABC的周長為41cm,一邊為15cm,求ΔBCE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(7分)如圖,已知拋物線yx2bxc經(jīng)過A(-1,0),B(3,0)兩點.

(1)求拋物線的解析式和頂點坐標(biāo);

(2)當(dāng)0<x<3時,求y的取值范圍;

(3)點P為拋物線上一點,若SPAB=10,求出此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線開口向上且經(jīng)過點,雙曲線經(jīng)過點,給出下列結(jié)論:;,c是關(guān)于x的一元二次方程的兩個實數(shù)根;其中正確結(jié)論是______填寫序號

查看答案和解析>>

同步練習(xí)冊答案