【題目】如圖,菱形紙片ABCD,∠A=60°,P為AB中點,折疊菱形紙片ABCD,使點C落在DP所在的直線上,得到經(jīng)過點D的折痕DE,則∠DEC等于( 。
A. 60°B. 65°C. 75°D. 80°
【答案】C
【解析】
連接BD,由菱形的性質(zhì)及∠A=60°,得到三角形ABD為等邊三角形,P為AB的中點,利用三線合一得到DP為角平分線,得到∠ADP=30°,∠ADC=120°,∠C=60°,進(jìn)而求出∠PDC=90°,由折疊的性質(zhì)得到∠CDE=∠PDE=45°,利用三角形的內(nèi)角和定理即可求出所求角的度數(shù).
連接BD,
∵四邊形ABCD為菱形,∠A=60°,
∴△ABD為等邊三角形,∠ADC=120°,∠C=60°,
∵P為AB的中點,
∴DP為∠ADB的平分線,即∠ADP=∠BDP=30°,
∴∠PDC=90°,
∴由折疊的性質(zhì)得到∠CDE=∠PDE=45°,
在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC與△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點D在AB上,點E與點C在AB的兩側(cè),連接BE,CD,點M、N分別是BE、CD的中點,連接MN,AM,AN.
下列結(jié)論:①△ACD≌△ABE;②△ABC∽△AMN;③△AMN是等邊三角形;④若點D是AB的中點,則S△ABC=2S△ABE.
其中正確的結(jié)論是 .(填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課堂上,老師在黑板上出了一道題:在同一平面內(nèi),若∠AOB=70°,∠BOC=15°24′36″,求∠AOC的度數(shù).
下面是七年級同學(xué)小明在黑板上寫的解題過程:
解:根據(jù)題意可畫出圖(如圖1)
因為∠AOB=70°,∠BOC=15°24′36″,
所以∠AOC=∠AOB+∠BOC
=70°+15°24′36″
=85°24′36″
即得到∠AOC=85°24′36″
同學(xué)們在下面議論,都說小明解答不全面,還有另一種情況.請按下列要求完成這道題的求解.
(1)依照圖1,用尺規(guī)作圖的方法將另一種解法的圖形在圖2中補(bǔ)充完整.
(2)結(jié)合第(1)小題的圖形寫出求∠AOC的度數(shù)的完整過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)計調(diào)查問卷時,下列提問是否合適?如果不合適的話應(yīng)該怎樣改進(jìn)?
(1)你上學(xué)時使用的交通工具是
.汽車.摩托車.步行.其他
(2)你對老師的教學(xué)滿意嗎?
.比較滿意.滿意.非常滿意.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點C落到點E處,BE交AD于點F.
(1)求證:△BDF是等腰三角形;
(2)如圖2,過點D作DG∥BE,交BC于點G,連接FG交BD于點O.
①判斷四邊形BFDG的形狀,并說明理由;
②若AB=6,AD=8,求FG的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折線ABCDE描述了一汽車在某一直路上行駛時汽車離出發(fā)地的距離s(千米)和行駛時間t(小時)間的變量關(guān)系,則下列結(jié)論正確的是( )
A. 汽車共行駛了120千米
B. 汽車在行駛途中停留了2小時
C. 汽車在整個行駛過程中的平均速度為每小時24千米
D. 汽車自出發(fā)后3小時至5小時間行駛的速度為每小時60千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A. 若|a|=﹣a,則 a 一 定是負(fù)數(shù)
B. 單項式 x3y2z 的系數(shù)為 1,次數(shù)是 6
C. 若 AP=BP,則點 P 是線段 AB 的中點
D. 若∠AOC=∠AOB,則射線 OC 是∠AOB 的平分線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為方便市民出行,甲、乙兩家公司推出專車服務(wù),運(yùn)價收費如下:設(shè)行駛路程時,用含的代數(shù)式表示乙公司的運(yùn)價.
行駛路程 | 收費標(biāo)準(zhǔn) | |
甲 | 乙 | |
不超過的部分 | 起步價6元 | 起步價7元 |
超過不超過的部分 | 每公里2.1元 | 每公里1.6元 |
超出的部分 | 每公里2.2元 |
(1)當(dāng)時,則費用表示為 元;當(dāng)時,則費用表示為 元.
(2)當(dāng)行駛路程時,對于乘客來說,哪個專車更合算,為什么?
(3)當(dāng)行駛路程時,對于乘客來說,哪個專車更合算,為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com