【題目】年月,振華中學舉行了迎國慶中華傳統(tǒng)文化節(jié)活動.本次文化節(jié)共有五個活動:書法比賽;國畫競技;詩歌朗誦;漢字大賽;古典樂器演奏.活動結束后,某班數學興趣小組開展了“我最喜愛的活動”的抽樣調查(每人只選一項),根據收集的數據繪制了兩幅不完整的統(tǒng)計圖,請根據圖中信息,解答下列問題:
(1)此次催記抽取的初三學生共 人, ,并補全條形統(tǒng)計圖;
(2)初三年級準備在五名優(yōu)秀的書法比賽選手中任意選擇兩人參加學校的最終決賽,這五名選手中有三名男生和兩名女生,用樹狀圖或列表法求選出的兩名選手正好是一男一女的概率是多少.
【答案】(1)100,10,圖形見解析;(2).
【解析】
(1)根據A的人數與所占百分比即可得到抽取總人數,用選擇E類的人數除以總人數求得m的值,再用總人數減去選擇A、C、D、E的人數得到選擇B類的學生人數,然后補全條形圖即可;
(2)根據題意畫出樹狀圖,然后利用概率公式求解即可.
解:(1)根據扇形統(tǒng)計圖可知,選A的學生所占百分比為:,
則抽取的學生總數為:25÷25%=100人,
選擇E的學生所占百分比為:,
選擇B的學生人數為:100﹣25﹣30﹣20﹣10=15人,
故答案為:100,10;條形圖如下:
(2)樹狀圖如下:
∵有20種可能等結果,其中符合條件的有12種,
∴選出的兩名選手正好是一男一女的概率是:.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=6米,BC=8米,動點P以2米/秒得速度從A點出發(fā),沿AC向C移動,同時,動點Q以1米/秒得速度從C點出發(fā),沿CB向B移動。當其中有一點到達終點時,他們都停止移動,設移動的時間為t秒。
(1)求△CPQ的面積S(平方米)關于時間t(秒)的函數關系式;
(2)在P、Q移動的過程中,當△CPQ為等腰三角形時,求出t的值;
(3)以P為圓心,PA為半徑的圓與以Q為圓心,QC為半徑的圓相切時,求出t的值。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,AC=BC,D是線段AB上的一點(不與A、B重合).過點B作BE⊥CD,垂足為E.將線段CE繞點C順時針旋轉,得到線段CF,連結EF.設∠BCE度數為.
(1)①補全圖形;
②試用含的代數式表示∠CDA.
(2)若 ,求的大。
(3)直接寫出線段AB、BE、CF之間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx﹣2與x軸交于點A(﹣1,0),B(4,0)兩點,與y軸交于點C,經過點B的直線交y軸于點E(0,2).
(1)求該拋物線的解析式;
(2)如圖2,過點A作BE的平行線交拋物線于另一點D,點P是拋物線上位于線段AD下方的一個動點,連結PA,EA,ED,PD,求四邊形EAPD面積的最大值;
(3)如圖3,連結AC,將△AOC繞點O逆時針方向旋轉,記旋轉中的三角形為△A′OC′,在旋轉過程中,直線OC′與直線BE交于點Q,若△BOQ為等腰三角形,請直接寫出點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖 1,在平面直角坐標系中,直線l1:yx5與x軸,y軸分別交于A.B兩點.直線l2:y4xb與l1交于點 D(-3,8)且與x軸,y軸分別交于C、E.
(1)求出點A坐標,直線l2的解析式;
(2)如圖2,點P為線段AD上一點(不含端點),連接CP,一動點Q從C出發(fā),沿線段CP 以每秒1個單位的速度運動到點P,再沿著線段PD以每秒個單位的速度運動到點D停止,求點Q在整個運動過程中所用最少時間與點P的坐標;
(3)如圖3,平面直角坐標系中有一點G(m,2),使得SCEGSCEB,求點G的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸交于、兩點,交軸于點,點關于拋物線對稱軸的對稱點為點.
(1)求線段的長度;
(2)為線段上方拋物線上的任意一點,點為,一動點從點出發(fā)運動到軸上的點,再沿軸運動到點.當四邊形的面積最大時,求的最小值;
(3)將線段沿軸向右平移,設平移后的線段為,直至平行于軸(點為第2小問中符合題意的點),連接直線.將繞著旋轉,設旋轉后、的對應點分別為、,在旋轉過程中直線與軸交于點,與線段交于點.當是以為腰的等腰三角形時,寫出的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等邊三角形OAB的頂點A的坐標為(5,0),頂點B在第一象限,函數y=(x>0)的圖象分別交邊OA、AB于點C、D.若OC=2AD,則k=_____
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與函數y=(x>0)的圖象交于點A(m,2),B(2,n).過點A作AC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使OD=OC,且△ACD的面積是6,連接BC.
(1)求m,k,n的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校初二開展英語拼寫大賽,愛國班和求知班根據初賽成績,各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績如圖所示:
(1)根據圖示填寫下表:
班級 | 中位數(分) | 眾數(分) | 平均數(分) |
愛國班 | 85 | ||
求知班 | 100 | 85 |
(2)結合兩班復賽成績的平均數和中位數,分析哪個班級的復賽成績比較好?
(3)已知愛國班復賽成績的方差是70,請求出求知班復賽成績的方差,并說明哪個班成績比較穩(wěn)定?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com