【題目】如圖,點O(0,0),A(01)是正方形OAA1B的兩個頂點,以對角線OA1為邊作正方形OA1A2B1,再以正方形的對角線OA2作正方形OA2A3B3,,依此規(guī)律,則點A10的坐標(biāo)是_____

【答案】(320)

【解析】

根據(jù)題意和圖形可看出每經(jīng)過一次變化,都順時針旋轉(zhuǎn)45°,邊長都乘以,所以可求出從AA3的后變化的坐標(biāo),再求出A1、A2、A3A4、A5,得出A10即可.

根據(jù)題意和圖形可看出每經(jīng)過一次變化,都順時針旋轉(zhuǎn)45°,邊長都乘以,

∵從AA3經(jīng)過了3次變化,

45°×3=135°,1×()3=2

∴點A3所在的正方形的邊長為2,點A3位置在第四象限.

∴點A3的坐標(biāo)是(2,﹣2)

可得出:A1點坐標(biāo)為(1,1),

A2點坐標(biāo)為(2,0),

A3點坐標(biāo)為(2,﹣2),

A4點坐標(biāo)為(0,﹣4)A5點坐標(biāo)為(4,﹣4),

A6(8,0),A7(88),A8(0,16),

A9(16,16),A10(32,0)

故答案為(320)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD,ABCD,且AB=2CD,E. F分別是AB、BC的中點,EFBD相交于點M.

(1)求證:四邊形CBED是平行四邊形.

(2)DB=9,求BM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在數(shù)軸上A點表示數(shù)aB點示數(shù)b,C點表示數(shù)cb是最小的正整數(shù),且a,b滿足 +(c-7)2=0.

(1) a= ,b= c=

(2) 若將數(shù)軸折疊,使得A點與C點重合,則點B與數(shù) 表示的點重合.

(3) ABC開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設(shè)t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)

(4) 請問:3BC-2AB的值是否隨著時間t的變化而改變? 若變化,請說明理由;若不變,請求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了貫徹落實市委政府提出的精準(zhǔn)扶貧精神,某校特制定了一系列幫扶A、B兩貧困村的計劃,現(xiàn)決定從某地運送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運完這批魚苗,已知這兩種大小貨車的載貨能力分別為12/輛和8/輛,其運往A、B兩村的運費如表:

車型

目的地

A村(元/輛)

B村(元/輛)

大貨車

800

900

小貨車

400

600

(1)求這15輛車中大小貨車各多少輛?

(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費用為y元,試求出yx的函數(shù)解析式.

(3)在(2)的條件下,若運往A村的魚苗不少于100箱,請你寫出使總費用最少的貨車調(diào)配方案,并求出最少費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax+b的圖象與x軸相交于點A(-2,0),與y軸交于點C,與反比例函數(shù)在第一象限內(nèi)的圖象交于點B(m,n),連結(jié)OB.若SAOB=6,SBOC=2.

(1)求一次函數(shù)的表達式;

(2)求反比例函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一樓房AB后有一假山,山坡斜面CD與水平面夾角為30°,坡面上點E處有一亭子,測得假山坡腳C與樓房水平距離BC=10米,與亭子距離CE=20米,小麗從樓房頂測得點E的俯角為45°.求樓房AB的高(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB與⊙O相切于點C,OA,OB分別交⊙O于點D,E,CD=CE.

(1)求證:OA=OB

(2)已知AB=4,OA=4,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點為邊上的一個動點,過點作直線,設(shè)的外角平分線于點,交的角平分線.

(1)求證:;

(2)當(dāng)點運動到何處時,四邊形是矩形?并證明你的結(jié)論;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O在線段AB上,AO2,OB1OC為射線,且∠BOC60°,動點P以每秒2個單位長度的速度從點O出發(fā),沿射線OC做勻速運動,設(shè)運動時間為t秒.當(dāng)ABP是直角三角形時,t的值為( 。

A. B. C. 1 D. 1

查看答案和解析>>

同步練習(xí)冊答案