1.如圖,在△ABC中,D是AB的中點,E是邊AC上一動點,聯(lián)結(jié)DE,過點D作DF⊥DE交邊BC于點F(點F與點B、C不重合),延長FD到點G,使DG=DF,聯(lián)結(jié)EF、AG,已知AB=10,BC=6,AC=8.
(1)求證:AC⊥AG;
(2)設(shè)AE=x,CF=y,求y與x的函數(shù)解析式,并寫出定義域;
(3)當(dāng)△BDF是以BF為腰的等腰三角形時,求AE的長.

分析 (1)根據(jù)勾股定理的逆定理得到△ABC是直角三角形,由D是AB的中點,得到AD=BD,根據(jù)全等三角形的性質(zhì)得到∠GAB=∠B,推出∠EAG=90°,于是得到結(jié)論;
(2)連接EG,根據(jù)勾股定理得到EF2=(8-x)2+y2,根據(jù)全等三角形的性質(zhì)得到AG=BF,由勾股定理得到EG2=x2+(6-y)2,于是得到方程(8-x)2+y2=x2+(6-y)2,即可得到結(jié)論
(3)①當(dāng)BF=DB時,6-y=5,列方程得到AE=$\frac{5}{2}$;②當(dāng)DF=FB時,連接DC,過點D作DH⊥FB,垂足為點H,可得DF=FB=6-y,根據(jù)勾股定理得方程(6-y)2=42+(3-y)2,求得y=$\frac{11}{6}$,于是得到$\frac{11}{6}$=$\frac{4x-7}{3}$求得AE=$\frac{25}{8}$.

解答 (1)證明:∵BC=6,AC=8,
∴BC2+AC2=36+64=100,
∵AB2=100,
∴BC2+AC2=AB2,
∴△ABC是直角三角形,且∠ACB=90°,
∵D是AB的中點,
∴AD=BD,
在△ADG和△BDF中,
$\left\{\begin{array}{l}{AD=BD}\\{∠ADG=∠BDF}\\{DG=DF}\end{array}\right.$
∴△ADG≌△BDF,
∴∠GAB=∠B,
∵∠ACB=90°,
∴∠CAB+∠B=90°,
∴∠CAB+∠GAB=90°,
∴∠EAG=90°,
即:AC⊥AG;

(2)連接EG,
∵AE=x,AC=8,
∴EC=8-x,
∵∠ACB=90°,
由勾股定理,得EF2=(8-x)2+y2,
∵△ADG≌△BDF,
∴AG=BF,
∵CF=y,BC=6,
∴AG=BF=6-y,
∵∠EAG=90°,
由勾股定理,得EG2=x2+(6-y)2
∵DG=DF,DF⊥DE,
∴EF=EG,
∴(8-x)2+y2=x2+(6-y)2,
∴y=$\frac{4x-7}{3}$,定義域:$\frac{7}{4}$<x<$\frac{25}{4}$;

(3)①當(dāng)BF=DB時,6-y=5,∴y=1,
∴1=$\frac{4x-7}{3}$,
∴x=$\frac{5}{2}$,
即AE=$\frac{5}{2}$;
②當(dāng)DF=FB時,連接DC,過點D作DH⊥FB,垂足為點H,
可得DF=FB=6-y,
∵∠ACB=90°,D是AB的中點,∴DC=DB=5,
∵DH⊥FB,BC=6,∴CH=HB=3,
∴FH=3-y,
∵DH⊥FB,
由勾股定理,得DH=4,
在Rt△DHF中,可得(6-y)2=42+(3-y)2,
解得:y=$\frac{11}{6}$,
∴$\frac{11}{6}$=$\frac{4x-7}{3}$
解得x=$\frac{25}{8}$,即AE=$\frac{25}{8}$,
綜上所述,AE的長度是$\frac{5}{2}$,$\frac{25}{8}$.

點評 本題考查了全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),勾股定理,勾股定理的逆定理,正確的作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.模型介紹:古希臘有一個著名的“將軍飲馬問題”,大致內(nèi)容如下:古希臘一位將軍,每天都要巡查河岸側(cè) 的兩個軍營A、B,他總是先去A營,再到河邊飲馬,之后再去B營,如圖①,他時常想,怎么走才能使每天的路程之和最短呢?
大數(shù)學(xué)家海倫曾用軸對稱的方法巧妙的解決了這問題

如圖②,作B關(guān)于直線l的對稱點B′,連接AB′與直線l交于點C,點C就是所求的位置.請你在下列的閱讀、應(yīng)用的過程中,完成解答.
(1)理由:如圖③,在直線L上任取一點C′,連結(jié)AC′,BC′,B′C′.
∵直線L是點B,B′的對稱軸,點C,C′在L上.
∴CB=CB',C′B=C'B'
∴AC+CB=AC+CB′=AB'.
在△AC′B′中,∵AB′<AC′+C′B′.
∴AC+CB<AC′+C′B′.
∴AC+CB<AC′+C′B′即AC+CB最小
歸納小結(jié):
本問題實際是利用軸對稱變換的思想,把A,B在直線的同側(cè)問題轉(zhuǎn)化為在直線的兩側(cè),從而可利用“兩 點之間線段最短”,即轉(zhuǎn)化為“三角形兩邊之和大于第三邊”的問題加以解決(其中C為AB′與l的交點,即A、C、B′三點共線).
本問題可拓展為“求定直線上一動點與直線外兩定點的距離和的最小值”問題的數(shù)學(xué)模型.
(2)模型應(yīng)用
如圖④,正方形 ABCD 的邊長為2,E為AB的中點,F(xiàn)是AC上一動點.
求EF+FB的最小值
分析:解決這個問題,可以借助上面的模型,由正方形的對稱性可知,B與D關(guān)于直線AC對稱,連結(jié)ED交AC于F,則EF+FB的最小值就是線段DE的長度,EF+FB的最小值是$\sqrt{5}$.

如圖⑤,已知⊙O的直徑CD為4,∠AOD的度數(shù)為60°,點B是$\widehat{AD}$的中點,在直徑CD上找一點P,使BP+AP的值最小,則BP+AP的最小值是2$\sqrt{2}$.
如圖⑥,一次函數(shù)y=-2x+4的圖象與x、y軸分別交于點A,B兩點,點O為坐標(biāo)原點,點C與點D分別為線段OA、AB的中點,點P為OB上一動點.求PC+PD取得最小值時P點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.把多項式ax2-4a分解因式的結(jié)果是a(x+2)(x-2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=-$\frac{8}{x}$的圖象交于A、B兩點,與坐標(biāo)軸交于M、N兩點.且點A的橫坐標(biāo)和點B的縱坐標(biāo)都是-2.
(1)求一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出y1>y2時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖1,二次函數(shù)y=-x2+bx+c的圖象過點A(3,0),B(0,4)兩點,動點P從A出發(fā),在線段AB上沿A→B的方向以每秒2個單位長度的速度運動,過點P作PD⊥y于點D,交拋物線于點C.設(shè)運動時間為t(秒).
(1)求二次函數(shù)y=-x2+bx+c的表達(dá)式;
(2)連接BC,當(dāng)t=$\frac{5}{6}$時,求△BCP的面積;
(3)如圖2,動點P從A出發(fā)時,動點Q同時從O出發(fā),在線段OA上沿O→A的方向以1個單位長度的速度運動.當(dāng)點P與B重合時,P、Q兩點同時停止運動,連接DQ,PQ,將△DPQ沿直線PC折疊得到△DPE.在運動過程中,設(shè)△DPE和△OAB重合部分的面積為S,直接寫出S與t的函數(shù)關(guān)系及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實行階梯水價.水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%,為合理確定各檔之間的界限,隨機(jī)抽查了該市5萬戶居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計圖.如圖所示,下面四個推斷合理的是( 。
①年用水量不超過180m3的該市居民家庭按第一檔水價交費;
②年用水量超過240m3的該市居民家庭按第三檔水價交費;
③該市居民家庭年用水量的中位數(shù)在150-180之間;
④該市居民家庭年用水量的平均數(shù)不超過180.
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.己知P是線段AB上一點(與端點A、B不重合),M是線段AP的中點,N是線段BP中點,AB=6厘米,那么MN的長等于(  )
A.2厘米B.3厘米C.4厘米D.5厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.如圖1,在平面直角坐標(biāo)系中,點B在x軸正半軸上,OB的長度為2m,以O(shè)B為邊向上作等邊三角形AOB,拋物線l:y=ax2+bx+c經(jīng)過點O,A,B三點
(1)當(dāng)m=2時,a=-$\frac{\sqrt{3}}{2}$,當(dāng)m=3時,a=-$\frac{\sqrt{3}}{3}$;
(2)根據(jù)(1)中的結(jié)果,猜想a與m的關(guān)系,并證明你的結(jié)論;
(3)如圖2,在圖1的基礎(chǔ)上,作x軸的平行線交拋物線l于P、Q兩點,PQ的長度為2n,當(dāng)△APQ為等腰直角三角形時,a和n的關(guān)系式為a=-$\frac{1}{n}$;
(4)利用(2)(3)中的結(jié)論,求△AOB與△APQ的面積比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.分解因式:16-x2=(  )
A.(4-x)(4+x)B.(x-4)(x+4)C.(8+x)(8-x)D.(4-x)2

查看答案和解析>>

同步練習(xí)冊答案