【題目】小明在學習了利用圖象法來求一元二次方程的近似根的知識后進行了嘗試:在直角坐標系中作出二次函數(shù)的圖象,由圖象可知,方程有兩個根,一個在和之間,另一個在和之間.利用計算器進行探索:由下表知,方程的一個近似根是( )
A. -4.1 B. -4.2 C. -4.3 D. -4.4
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:
如圖①,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分別是BC、CD上的點.且∠EAF=60°.探究圖中線段BE、EF、FD之間的數(shù)量關系.
解法探究:小明同學通過思考,得到了如下的解決方法.
延長FD到點G,使DG=BE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,從而可得結(jié)論.
(1)請先寫出小明得出的結(jié)論,并在小明的解決方法的提示下,寫出所得結(jié)論的理由.
解:線段BE、EF、FD之間的數(shù)量關系是: .
理由:延長FD到點G,使DG=BE,連結(jié)AG.(以下過程請同學們完整解答)
(2)拓展延伸:
如圖②,在四邊形ABCD中,AB=AD,若∠B+∠D=180°,E、F分別是BC、CD上的點.且∠EAF=∠BAD,則(1)中的結(jié)論是否仍然成立?若成立,請再把結(jié)論寫一寫;若不成立,請直接寫出你認為成立的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:點D是等腰直角三角形ABC斜邊BC所在直線上一點(不與點B重合),連接AD.
(1)如圖1,當點D在線段BC上時,將線段AD繞點A逆時針方向旋轉(zhuǎn)90°得到線段AE,連接CE.求證:BD=CE,BD⊥CE;
(2)如圖2,當點D在線段BC延長線上時,將線段AD繞點A逆時針方向旋轉(zhuǎn)90°得到線段AE,連接CE.請畫出圖形。上述結(jié)論是否仍然成立,并說明理由;
(3)根據(jù)圖2,請直接寫出AD、BD、CD三條線段之間的數(shù)量關系。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,BD是AC邊上的高,延長BC至E,使CE=CD,連接DE。
(1)求∠E的度數(shù)?
(2)△DBE是什么三角形?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一元二次方程的一根為.
求關于的函數(shù)關系式;
求證:拋物線與軸有兩個交點;
設拋物線與軸交于、兩點(、不重合),且以為直徑的圓正好經(jīng)過該拋物線的頂點,求,的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知 C 是線段 AB 垂直平分線 m 上一動點,連接 AC,以 AC 為邊作等邊△ACD,點 D 在直線 AB 的上方,連接 DB 與直線 m 交于點 E,連接 BC
(1)如圖 1,點 C 在線段 AB 上
①根據(jù)題意補全圖 1;
②求證:∠EAC=∠EDC;
(2)如圖 2,點 C 在直線 AB 的上方,0°<∠CAB<30°,用等式表示線段 BE、CE、DE 之間的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB⊥BC,AD⊥DC,∠BAD=m°(m>90),則BC、CD上分別找一點M、N,當△AMN周長最小時,∠AMN+∠ANM的度數(shù)是_______(用m來表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先化簡,再求值
(1)(1+2x)(1﹣2x)﹣(x﹣3)2+5x(x﹣1),其中x=﹣2
(2)[2(x﹣y)2﹣(2x+y)(x﹣2y)]÷4y,其中x=﹣8,y=1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com