計(jì)算:|
3
-2|+20090-(-
1
3
-2+3tan30°.
考點(diǎn):實(shí)數(shù)的運(yùn)算,負(fù)整數(shù)指數(shù)冪,特殊角的三角函數(shù)值
專題:計(jì)算題
分析:原式第一項(xiàng)利用絕對(duì)值的代數(shù)意義化簡,第二項(xiàng)利用零指數(shù)冪法則計(jì)算,第三項(xiàng)利用負(fù)指數(shù)冪法則計(jì)算,最后一項(xiàng)利用特殊角的三角函數(shù)值計(jì)算即可得到結(jié)果.
解答:解:原式=2-
3
+1-9+3×
3
3

=-6.
點(diǎn)評(píng):此題考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求值:(x+y)2+(x+y)(x-y)-2x3y÷xy,其中x=
1
2
,y=
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,拋物線y=-
3
16
x2平移后過點(diǎn)A(8,0)和原點(diǎn),頂點(diǎn)為B,對(duì)稱軸與x軸相交于點(diǎn)C,與原拋物線相交于點(diǎn)D.
(1)求平移后拋物線的解析式并直接寫出陰影部分的面積S陰影;
(2)如圖2,直線AB與y軸相交于點(diǎn)P,點(diǎn)M為線段OA上一動(dòng)點(diǎn),∠PMN為直角,邊MN與AP相交于點(diǎn)N,設(shè)OM=t,試探究:
①t為何值時(shí)△MAN為等腰三角形;
②t為何值時(shí)線段PN的長度最小,最小長度是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在矩形ABCD中,已知BC=2AB,E是CD上一點(diǎn),連接BE,將矩形沿直線BE折疊,使點(diǎn)C落在AD的F點(diǎn)上,連接CF,求∠DCF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【試題背景】
已知:l∥m∥n∥k,平行線l與m、m與n、n與k之間的距離分別為d1、d2、d3,且d1=d3=1,d2=2.我們把四個(gè)頂點(diǎn)分別在l、m、n、k這四條平行線上的四邊形稱為“格線四邊形”.

【探究1】
(1)如圖1,正方形ABCD為“格線四邊形”,BE⊥l于點(diǎn)E,BE的反向延長線交直線k于點(diǎn)F,求正方形ABCD的邊長.
【探究2】
(2)矩形ABCD為“格線四邊形”,其長:寬=2:1,則矩形ABCD的寬為
 
.(直接寫出結(jié)果即可)
【探究3】
如圖2,菱形ABCD為“格線四邊形”且∠ADC=60°,△AEF是等邊三角形,AE⊥k于點(diǎn)E,∠AFD=90°,直線DF分別交直線l、k于點(diǎn)G、點(diǎn)M.求證:EC=DF.
【拓展】
(4)如圖3,l∥k,等邊△ABC的頂點(diǎn)A、B分別落在直線l、k上,AB⊥k于點(diǎn)B,且AB=4,∠ACD=90°,直線CD分別交直線l、k于點(diǎn)G、點(diǎn)M,點(diǎn)D、點(diǎn)E分別是線段GM、BM上的動(dòng)點(diǎn),且始終保持AD=AE,DH⊥l于點(diǎn)H.
猜想:DH在什么范圍內(nèi),BC∥DE?并說明此時(shí)BC∥DE的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解不等式組,并把解集表示在數(shù)軸上:
1+2x<3+x
5x≤4x-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,∠1=∠2,∠3=∠4.求證:DF∥BC.
證明:∵∠3=∠4(已知),
 
 
 

∴∠2=∠
 
 

又∵∠1=∠2(已知),
∴∠1=∠
 

∴DF∥BC.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果一個(gè)角等于54°,那么它的余角等于
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

語句“x的3倍與10的和小于或等于7”用不等式表示為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案